Development of Sensitive, Specific, and Deployable Methods for Detecting and Discriminating mTBI and PTSD

  • Robin R. Johnson
  • Djordje Popvic
  • Deborah Perlick
  • Dennis Dyck
  • Chris Berka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

This paper presents a theoretical framework for the development of non-invasive methods for detection and discrimination between mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). Growing use of IEDs and increased pace of multiple deployment cycles in current conflicts has lead to significant increases in exposure to risks for these conditions. Co-morbidity of these conditions is common, diagnostically challenging, and controversial. Development of easy to use, deployable diagnostic tools would allow for accurate early identification and intervention. Early intervention increases the potential for positive outcomes for both the individual and their families. In addition, the appropriately designed system could be used epidemiologically to screen returning soldiers for these conditions that may otherwise not be appropriately assessed until much later, if at all. The framework presented here proposes that a wireless, portable EEG/EKG based device may be an appropriate platform upon which to develop such an assessment tool.

Keywords

Electroencephalogram (EEG) Electrocardiogram (EKG) Post-Traumatic Stress Disorder (PTSD) mild Traumatic Brain Injury (mTBI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jontz, S.: TBI during wartime: the Afghanistan and Iraq Experience; More head injuries in Afghanistan, Iraq push improvements in protective gear (2006), http://www.stripes.com/article.asp?section=104&article=20155 (cited February 3, 2009)
  2. 2.
    Warden, D.: Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 21(5), 398–402 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    Hoge, C.W., et al.: Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N. Engl. J. Med. 358(5), 453–463 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    Schneiderman, A.I., Braver, E.R., Kang, H.K.: Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am. J. Epidemiol. 167(12), 1446–1452 (2008)CrossRefPubMedGoogle Scholar
  5. 5.
    Frewen, P.A., Lanius, R.A.: Toward a psychobiology of posttraumatic self-dysregulation: reexperiencing, hyperarousal, dissociation, and emotional numbing. Ann. N. Y. Acad. Sci. 1071, 110–124 (2006)Google Scholar
  6. 6.
    Hoge, C.W., et al.: Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N. Engl. J. Med. 351(1), 13–22 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    Killgore, W.D., et al.: Post-combat invincibility: violent combat experiences are associated with increased risk-taking propensity following deployment. J. Psychiatr Res. 42(13), 1112–1121 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Johnsen, G.E., Asbjornsen, A.E.: Consistent impaired verbal memory in PTSD: A meta-analysis. J. Affect Disord. 111(1), 74–82 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    Horner, M.D., Hamner, M.B.: Neurocognitive functioning in posttraumatic stress disorder. Neuropsychol Rev. 12(1), 15–30 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    Breslau, N.: Outcomes of posttraumatic stress disorder. J. Clin. Psychiatry 62(Suppl. 17), 55–59 (2001)PubMedGoogle Scholar
  11. 11.
    Niemann, H., Ruff, R.M., Baser, C.A.: Computer-assisted attention retraining in head-injured individuals: a controlled efficacy study of an outpatient program. J. Consult Clin. Psychol. 58(6), 811–817 (1990)CrossRefPubMedGoogle Scholar
  12. 12.
    Niemann, H., Ruff, R.M., Kramer, J.H.: An attempt towards differentiating attentional deficits in traumatic brain injury. Neuropsychol Rev. 6(1), 11–46 (1996)CrossRefPubMedGoogle Scholar
  13. 13.
    Rohleder, N., et al.: Hypocortisolism and increased glucocorticoid sensitivity of pro-Inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol. Psychiatry 55(7), 745–751 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    de Kloet, C.S., et al.: Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Mol. Psychiatry 12(5), 443–453 (2007)PubMedGoogle Scholar
  15. 15.
    Baker, D.G., et al.: Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 9(4), 209–217 (2001)CrossRefPubMedGoogle Scholar
  16. 16.
    Vidovic, A., et al.: Circulating lymphocyte subsets, natural killer cell cytotoxicity, and components of hypothalamic-pituitary-adrenal axis in Croatian war veterans with posttraumatic stress disorder: cross-sectional study. Croat Med. J. 48(2), 198–206 (2007)PubMedPubMedCentralGoogle Scholar
  17. 17.
    Belda, X., et al.: Exposure to severe stressors causes long-lasting dysregulation of resting and stress-induced activation of the hypothalamic-pituitary-adrenal axis. Ann. N. Y. Acad. Sci. 1148, 165–173 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Yehuda, R., et al.: Enhanced effects of cortisol administration on episodic and working memory in aging veterans with PTSD. Neuropsychopharmacology 32(12), 2581–2591 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    Mason, J.W., et al.: Marked lability in urinary cortisol levels in subgroups of combat veterans with posttraumatic stress disorder during an intensive exposure treatment program. Psychosom Med. 64(2), 238–246 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Pajer, K., Rabin, B., Gardner, W.: Increased IgG 3:4 ratios in adolescent antisocial females: evidence of Th1/Th2 imbalance? Brain Behav. Immun. 16(6), 747–756 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Thomsen, A.F., et al.: The risk of affective disorders in patients with adrenocortical insufficiency. Psychoneuroendocrinology 31(5), 614–622 (2006)CrossRefPubMedGoogle Scholar
  22. 22.
    Wachter, D., et al.: Pituitary insufficiency after traumatic brain injury. J. Clin. Neurosci. 16(2), 202–208 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    Shapira-Lichter, I., et al.: Cytokines and cholinergic signals co-modulate surgical stress-induced changes in mood and memory. Brain Behav Immun. 22(3), 388–398 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Maier, S.F., Watkins, L.R.: Immune-to-central nervous system communication and its role in modulating pain and cognition: Implications for cancer and cancer treatment. Brain Behav Immun. 17(Suppl. 1), S125–S131 (2003)Google Scholar
  25. 25.
    Baune, B.T., et al.: Association between genetic variants of IL-1beta, IL-6 and TNF-alpha cytokines and cognitive performance in the elderly general population of the MEMO-study. Psychoneuroendocrinology 33(1), 68–76 (2008)CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, J., et al.: Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun. 22(3), 301–311 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Meyers, C.A., Albitar, M., Estey, E.: Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer, 2005 104(4), 788–793 (2005)Google Scholar
  28. 28.
    Banks, W.A., Farr, S.A., Morley, J.E.: Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10(6), 319–327 (2002)CrossRefPubMedGoogle Scholar
  29. 29.
    Reichenberg, A., et al.: Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen. Psychiatry 58(5), 445–452 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Rosczyk, H.A., Sparkman, N.L., Johnson, R.W.: Neuroinflammation and cognitive function in aged mice following minor surgery. Exp. Gerontol. (2008)Google Scholar
  31. 31.
    Larson, S.J., Hartle, K.D., Ivanco, T.L.: Acute administration of interleukin-1beta disrupts motor learning. Behav Neurosci. 121(6), 1415–1420 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    Sparkman, N.L., et al.: Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J. Neurosci. 26(42), 10709–10716 (2006)CrossRefPubMedGoogle Scholar
  33. 33.
    Marshall, L., Born, J.: Brain-immune interactions in sleep. Int. Rev. Neurobiol. 52, 93–131 (2002)CrossRefPubMedGoogle Scholar
  34. 34.
    Eskandari, F., Sternberg, E.M.: Neural-immune interactions in health and disease. Ann. N. Y. Acad. Sci. 966, 20–27 (2002)CrossRefPubMedGoogle Scholar
  35. 35.
    Ballieux, R.E.: The mind and the immune system. Theor. Med. 15(4), 387–395 (1994)CrossRefPubMedGoogle Scholar
  36. 36.
    Dantzer, R., Kelley, K.W.: Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 21(2), 153–160 (2007)CrossRefPubMedGoogle Scholar
  37. 37.
    Song, Y., et al.: Disturbance of serum interleukin-2 and interleukin-8 levels in posttraumatic and non-posttraumatic stress disorder earthquake survivors in northern China. Neuroimmunomodulation 14(5), 248–254 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    Altemus, M., Dhabhar, F.S., Yang, R.: Immune function in PTSD. Ann. N. Y. Acad. Sci. 1071, 167–183 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    Ironson, G., et al.: Posttraumatic stress symptoms, intrusive thoughts, loss, and immune function after Hurricane Andrew. Psychosom Med. 59(2), 128–141 (1997)CrossRefPubMedGoogle Scholar
  40. 40.
    Morganti-Kossmann, M.C., et al.: Modulation of immune response by head injury. Injury 38(12), 1392–1400 (2007)CrossRefPubMedGoogle Scholar
  41. 41.
    Lenzlinger, P.M., et al.: The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24(1-3), 169–181 (2001)CrossRefPubMedGoogle Scholar
  42. 42.
    Mazzeo, A.T., et al.: Severe human traumatic brain injury, but not cyclosporin a treatment, depresses activated T lymphocytes early after injury. J. Neurotrauma 23(6), 962–975 (2006)CrossRefPubMedGoogle Scholar
  43. 43.
    Sbordone, R.J., Liter, J.C.: Mild traumatic brain injury does not produce post-traumatic stress disorder. Brain Inj. 9(4), 405–412 (1995)CrossRefPubMedGoogle Scholar
  44. 44.
    Kennedy, J.E., et al.: Posttraumatic stress disorder and posttraumatic stress disorder-like symptoms and mild traumatic brain injury. J. Rehabil. Res. Dev. 44(7), 895–920 (2007)CrossRefPubMedGoogle Scholar
  45. 45.
    Klein, E., Caspi, Y., Gil, S.: The relation between memory of the traumatic event and PTSD: evidence from studies of traumatic brain injury. Can. J. Psychiatry 48(1), 28–33 (2003)PubMedGoogle Scholar
  46. 46.
    Reed, C.: PTSD and TBI awareness programs launched (2007), http://www.stripes.com/article.asp?section=104&article=50046 (cited February 5, 2009)
  47. 47.
    Hartmann, E.: A note on the nightmare. Int. Psychiatry Clin. 7(2), 192–197 (1970)PubMedGoogle Scholar
  48. 48.
    Ross, R.J., et al.: Sleep disturbance as the hallmark of posttraumatic stress disorder. Am. J. Psychiatry 146(6), 697–707 (1989)CrossRefPubMedGoogle Scholar
  49. 49.
    Prinzie, A., Van den Poel, D.: Random forests for multiclass classification: Random multinomial logit. Expert Systems with Applications 34(3), 1721–1732 (2008)Google Scholar
  50. 50.
    Hoffman, D.A., et al.: Diagnosis and treatment of closed head injury. Journal of Neurotherapy 1(1), 14–21 (1995)CrossRefGoogle Scholar
  51. 51.
    Johnstone, J., Thatcher, R.W.: Quantitative EEG analysis and rehabilitation issues in mild traumatic brain injury. J. Insur. Med. 23(4), 228–232 (1991)PubMedGoogle Scholar
  52. 52.
    Pointinger, H., et al.: Electroencephalography in primary diagnosis of mild head trauma. Brain Inj. 16(9), 799–805 (2002)CrossRefPubMedGoogle Scholar
  53. 53.
    Thatcher, R.W., et al.: Biophysical linkage between MRI and EEG amplitude in closed head injury. Neuroimage 7(4 Pt. 1), 352–367 (1998)CrossRefPubMedGoogle Scholar
  54. 54.
    Thatcher, R.W., et al.: Biophysical linkage between MRI and EEG coherence in closed head injury. Neuroimage 8(4), 307–326 (1998)CrossRefPubMedGoogle Scholar
  55. 55.
    Thatcher, R.W., Krause, P.J., Hrybyk, M.: Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin. Neurophysiol. 64(2), 123–143 (1986)CrossRefPubMedGoogle Scholar
  56. 56.
    Thatcher, R.W., et al.: An EEG severity index of traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 13(1), 77–87 (2001)CrossRefPubMedGoogle Scholar
  57. 57.
    Thatcher, R.W., et al.: EEG discriminant analyses of mild head trauma. Electroencephalogr Clin. Neurophysiol. 73(2), 94–106 (1989)CrossRefPubMedGoogle Scholar
  58. 58.
    Gottshall, K.R., et al.: To investigate the influence of acute vestibular impairment following mild traumatic brain injury on subsequent ability to remain on activity duty 12 months later. Mil. Med. 172(8), 852–857 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robin R. Johnson
    • 1
  • Djordje Popvic
    • 1
    • 2
  • Deborah Perlick
    • 3
  • Dennis Dyck
    • 4
  • Chris Berka
    • 1
  1. 1.Advanced Brain Monitoring, Inc.USA
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.Mt. Sinai School of MedicineNew YorkUSA
  4. 4.Washington State UniversitySpokaneUSA

Personalised recommendations