Advertisement

Abstract

Current brain-computer interface (BCI) research attempts to estimate intended operator body or cursor movements from his/her electroencephalographic (EEG) activity alone. More general methods of monitoring operator cognitive state, intentions, motivations, and reactions to events might be based on continuous monitoring of the operator’s (EEG) as well as his of her body and eye movements and, to the extent possible, her or his multisensory input. Joint modeling of this data should attempt to identify individualized modes of brain/body activity and/or reactivity that appear in the operator’s brain and/or behavior in distinct cognitive contexts, if successful producing, in effect, a new mobile brain/body imaging (MoBI) modality. Robust MoBI could allow development of new brain/body-system interface (BBI) designs performing multidimensional monitoring of an operator’s changing cognitive state including their movement intentions and motivations and (‘top-down’) apprehension of sensory events.

Keywords

cognitive monitoring electroencephalography (EEG) motion capture independent component analysis (ICA) brain-computer interface (BCI) mobile brain/body imaging (MoBI) human-computer interface (HCI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makeig, S., Gramann, K., Jung, T.-P., Sejnowski, T.J., Poizner, H.: Linking brain, mind and behavior: The promise of mobile brain/body imaging (MoBI). Int. J. Psychophysiolog. (accepted for publication)Google Scholar
  2. 2.
    Makeig, S., Jung, T.-P., Ghahremani, D., Bell, A.J., Sejnowski, T.J.: Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA. 94, 10979–10984 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T.J., Courchesne, E.: Functionally independent components of the late positive event-related potential during visual spatial attention. J. Neurosci. 19, 2665–2680 (1999)PubMedGoogle Scholar
  4. 4.
    Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiolog. 37, 163–178 (2000)CrossRefGoogle Scholar
  5. 5.
    Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J.: Analysis and visualization of single-trial event-related potentials. Human Brain Mapping 14, 166–185 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Makeig, S., Westerfield, M., Jung, T.P., Townsend, J., Courchesne, E., Sejnowski, T.J.: Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    Delorme, A., Makeig, S.: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134, 9–21 (2004)CrossRefGoogle Scholar
  8. 8.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Makeig, S., Delorme, A., Westerfield, M., Jung, T.-P., Townsend, J., Courchesne, E., Sejnowski, T.J.: Electroencephalographic brain dynamics following manually responded visual targets. PLOS Biol. 2, 747–762 (2004)CrossRefGoogle Scholar
  10. 10.
    Onton, J., Delorme, A., Makeig, S.: Frontal midline EEG dynamics during working memory. NeuroImage 27, 341–356 (2005)CrossRefPubMedGoogle Scholar
  11. 11.
    Makeig, S., Enghoff, S., Jung, T.-P., Sejnowski, T.J.: A natural basis for efficient brain-actuated control. IEEE Trans. Rehab. Eng. 8, 208–211 (2000)CrossRefGoogle Scholar
  12. 12.
    Delorme, A., Makeig, S.: EEG changes accompanying learned regulation of 12-Hz EEG activity. IEEE Trans. Neural Sys. Rehab. Eng. 2, 133–136 (2003)CrossRefGoogle Scholar
  13. 13.
    Arias-Carrión, O., Pöppel, E.: Dopamine, learning and reward-seeking behavior. Act. Neurobiol. Exp. 67, 481–488 (2007)Google Scholar
  14. 14.
    Bigdely-Shamlo, N., Vankov, A., Ramirez, R.R., Makeig, S.: Brain activity-based image classification from rapid serial visual presentation. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 432–441 (2008)CrossRefPubMedGoogle Scholar
  15. 15.
    Chin-Teng Lin, C.-T., Ko, L.-W., Chiou, J.-C., Duann, J.-R., Huang, R.-S., Liang, S.-F., Chiu, T.-W., Jung, T.-P.: Noninvasive neural prostheses using mobile and wireless EEG. Proc. IEEE 96, 1167–1183 (2008)CrossRefGoogle Scholar
  16. 16.
    Makeig, S., Inlow, M.: Lapses in alertness: Coherence of fluctuations in performance and the EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86, 23–35 (1993)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Scott Makeig
    • 1
  1. 1.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of CaliforniaSan DiegoUSA

Personalised recommendations