Abstract

Detection and automated interpretation of attention-related or intention-related brain activity carries significant promise for many military and civilian applications. This interpretation of brain activity could provide information about a person’s intended movements, imagined movements, or attentional focus, and thus could be valuable for optimizing or replacing traditional motor-based communication between a person and a computer or other output devices. We describe here the objective and preliminary results of our studies in this area.

Keywords

Brain-computer interface BCI Neural Engineering Neural Prosthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Clinical Neurophysiology 70, 510–523 (1988)CrossRefGoogle Scholar
  2. 2.
    Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalography and clinical neurophysiology 78, 252–259 (1991)CrossRefPubMedGoogle Scholar
  3. 3.
    Sutter, E.E.: The Brain Response Interface: Communication Through Visually-Induced Electrical Brain Responses. J. Microcomp. App. 15, 31–45 (1992)CrossRefGoogle Scholar
  4. 4.
    McFarland, D.J., Neat, G.W., Wolpaw, J.R.: An EEG-based method for graded cursor control. Psychobiology 21, 77–81 (1993)Google Scholar
  5. 5.
    Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-Computer Interface - a New Communication Device for Handicapped Persons. J. Microcomp. App. 16, 293–299 (1993)CrossRefGoogle Scholar
  6. 6.
    Wolpaw, J.R., McFarland, D.J.: Multichannel EEG-based brain-computer communication. Clin. Neurophysiol. 90, 444–449 (1994)CrossRefGoogle Scholar
  7. 7.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)CrossRefPubMedGoogle Scholar
  8. 8.
    Pfurtscheller, G., Guger, C., Mueller, G., Krausz, G., Neuper, C.: Brain oscillations control hand orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Millan, J.R., Renkens, F., Mourino, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed. Eng. 51, 1026–1033 (2004)CrossRefGoogle Scholar
  10. 10.
    Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 17849–17854 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., Wolpaw, J.R.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64, 1775–1777 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst. Rehabil. Eng. 14, 147–152 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Vaughan, T.M., McFarland, D.J., Schalk, G., Sarnacki, W.A., Krusienski, D.J., Sellers, E.W., Wolpaw, J.R.: The Wadsworth BCI Research and Development Program: at home with BCI. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 14, 229–233 (2006)Google Scholar
  14. 14.
    McFarland, D., Krusienski, D., Sarnacki, W., Wolpaw, J.: Emulation of computer mouse control with a noninvasive brain–computer interface. J. Neural Eng. 5, 101–110 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Muller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008)CrossRefPubMedGoogle Scholar
  16. 16.
    Wilson, J.A., Felton, E.A., Garell, P.C., Schalk, G., Williams, J.C.: ECoG factors underlying multimodal control of a brain-computer interface. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 14, 246–250 (2006)CrossRefGoogle Scholar
  17. 17.
    Leuthardt, E.C., Miller, K.J., Schalk, G., Rao, R.P., Ojemann, J.G.: Electrocorticography-based brain computer interface–the Seattle experience. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 14, 194–198 (2006)CrossRefGoogle Scholar
  18. 18.
    Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering 1, 63–71 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    Felton, E.A., Wilson, J.A., Williams, J.C., Garell, P.C.: Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases. J. Neurosurg. 106, 495–500 (2007)Google Scholar
  20. 20.
    Schalk, G., Miller, K., Anderson, N., Wilson, J., Smyth, M., Ojemann, J., Moran, D., Wolpaw, J., Leuthardt, E.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Hochberg, L., Serruya, M., Friehs, G., Mukand, J., Saleh, Caplan, A., Branner, Chen, Penn, R., Donoghue, J.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)CrossRefPubMedGoogle Scholar
  23. 23.
    Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain-computer interface. Nature 442, 195–198 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.: Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25, 4681–4693 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    Andersen, R.A., Burdick, J.W., Musallam, S., Pesaran, B., Cham, J.G.: Cognitive neural prosthetics. Trends Cogn. Sci (Regul. Ed.) 8, 486–493 (2004)Google Scholar
  26. 26.
    Shenoy, K.V., Meeker, D., Cao, S., Kureshi, S.A., Pesaran, B., Buneo, C.A., Batista, A.P., Mitra, P.P., Burdick, J.W., Andersen, R.A.: Neural prosthetic control signals from plan activity. Neuroreport 14, 591–596 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., Donoghue, J.: Instant neural control of a movement signal. Nature 416, 141–142 (2002)CrossRefPubMedGoogle Scholar
  28. 28.
    Taylor, D.M., Tillery, S.I., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002)CrossRefPubMedGoogle Scholar
  29. 29.
    Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233, 1416–1419 (1986)CrossRefPubMedGoogle Scholar
  30. 30.
    Shain, W., Spataro, L., Dilgen, J., Haverstick, K., Retterer, S., Isaacson, M., Saltzman, M., Turner, J.: Controlling Cellular Reactive Responses Around Neural Prosthetic Devices Using Peripheral and Local Intervention Strategies. IEEE Trans Neural Syst. Rehabil. Eng. 11, 186–188 (2003)CrossRefPubMedGoogle Scholar
  31. 31.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefPubMedGoogle Scholar
  32. 32.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE transactions on bio-medical engineering 51, 1034–1043 (2004)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Brunner
    • 1
    • 6
  • Gerwin Schalk
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Wadsworth CenterNew York State Department of HealthUSA
  2. 2.Department of NeurologyAlbany Medical CollegeUSA
  3. 3.Department of NeurosurgeryWashington University in St. LouisUSA
  4. 4.Department of Biomedical EngineeringRensselaer Polytechnic InstituteUSA
  5. 5.Department of Biomedical SciencesState University of New York at AlbanyUSA
  6. 6.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations