In-Helmet Oxy-hemoglobin Change Detection Using Near-Infrared Sensing

  • Erin M. Nishimura
  • Christopher A. Russell
  • J. Patrick Stautzenberger
  • Harvey Ku
  • J. Hunter DownsIII
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)


Near-infrared (NIR) sensing in flight applications can provide critical objective indicators of crew state. By monitoring oxy-hemoglobin concentrations, a NIR sensor can detect changes in flight crew physiology in response to both cognitive demands and extreme conditions related to flight applications, including gravity-induced loss of consciousness (G-LOC) and hypoxia. A custom NIR sensor was created for in-helmet monitoring of oxy-hemoglobin in flight. This wearable, wireless sensor addresses requirements for flight applications and was applied to a case study that examines the raw optical signal and oxy-hemoglobin response to Valsalva maneuvers performed at 1g.


Near-infrared sensing functional brain imaging oxy-hemoglobin hemodynamics physiologic monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Snow, M.P., Barker, R.A., O’Neill, K.R., Offer, B.W., Edwards, R.E.: Augmented cognition in a prototype uninhabited combat air vehicle operator console. In: Schmorrow, D.D., Stanney, K.M., Reeves, L.M. (eds.) Foundations of Augmented Cognition, 2nd edn., pp. 279–288. Strategic Analysis, Inc, Arlington (2006)Google Scholar
  2. 2.
    Ryoo, H.C., Sun, H.H., Shender, B.S., Hrebien, L.: Consciousness monitoring using near-infrared spectroscopy (NIRS) during high +Gz exposures. Medical Engineering and Physics 26(9), 745–753 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    McKinley, R.A., Tripp Jr., L.D., Bolia, S.D., Roark, M.R.: Computer modeling of acceleration effects on cerebral oxygen saturation. Aviat. Space Environ. Med. 76(8), 733–738 (2005)PubMedGoogle Scholar
  4. 4.
    Lyons, T.J.: Analysis of mission and aircraft factors in G-induced loss of consciousness in the USAF: 1982-2002. Aviat. Space Environ. Med 75(6), 482–486 (2004)Google Scholar
  5. 5.
    Cable, G.G.: In-Flight Hypoxia Incidents in Military Aircraft: Causes and Implications for Training. Aviat. Space Environ. Med. 74(2), 169–172 (2003)PubMedGoogle Scholar
  6. 6.
    Nishimura, E.M., Stautzenberger, J., Robinson, W., Downs, T.H., Downs III, J.H.: A New Approach to fNIR: OTIS. IEEE Engineering in Medicine and Biology Magazine (July/August 2007)Google Scholar
  7. 7.
    Schmidt, F.E.W.: Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging. Ph.D. Thesis, Dept. of Medical Physics and Bioengineering, University College London (1999)Google Scholar
  8. 8.
    Bluestone, A.Y., Abdoulaev, G., Schmitz, C.H., Barbour, R.L., Hielscher, A.H.: Three-dimensional optical tomography of hemodynamics in the human head. Optics Express 9(6), 272–286 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Franceschini, M.A., Boas, D.A., Zourabian, A., Diamond, S.G., Nadgir, S., Lin, D.W., Moore, J.B., Fantini, S.: Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects. J. Appl. Physiol. 92, 372–384 (2002)PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tiecks, F.P., Lam, A.M., Matta, B.F., Strebel, S., Douville, C., Newell, D.W.: Effects of the Valsalva maneuver on cerebral circulation in healthy adults. Stroke 26, 1386–1392 (1995)CrossRefPubMedGoogle Scholar
  11. 11.
    Matta, B.F., Lam, J., Smileswiski, P.: The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study. J. Neurosurgical Anesthesiology 8, 601 (1996)Google Scholar
  12. 12.
    Pott, F., Van Lieshout, J.J., Ide, K., Madsen, P., Secher, N.H.: Middle cerebral artery blood velocity during Valsalva mameuver in the standing position. J. Appl. Physiol. 88, 1545–1550 (2000)PubMedGoogle Scholar
  13. 13.
    Dawson, S.L., Panerai, R.B., Potter, J.F.: Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver. J. Appl. Physiol. 86, 675–680 (1999)PubMedGoogle Scholar
  14. 14.
    Raisis, J.E., Kindt, G.W., McGillicuddy, J.E., Giannotta, L.: The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure. J. Surg. Res. 26, 101–107 (1979)CrossRefPubMedGoogle Scholar
  15. 15.
    Gratton, G., Corballis, P.M.: Removing the heart from the brain: Compensation for the pulse artifact in the photon migration signal. Psychophysiology 32, 292–299 (1995)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erin M. Nishimura
    • 1
  • Christopher A. Russell
    • 1
  • J. Patrick Stautzenberger
    • 1
  • Harvey Ku
    • 1
  • J. Hunter DownsIII
    • 1
  1. 1.Archinoetics, LLCHonoluluUSA

Personalised recommendations