Enhancing Text-Based Analysis Using Neurophysiological Measures

  • Adrienne Behneman
  • Natalie Kintz
  • Robin Johnson
  • Chris Berka
  • Kelly Hale
  • Sven Fuchs
  • Par Axelsson
  • Angela Baskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

Intelligence analysts are faced with the demanding task of identifying patterns in large volumes of complex, textual sources and predicting possible outcomes based on perceived patterns. To address this need, the Advanced Neurophysiology for Intelligence Text Analysis (ANITA) system is being developed to provide a real-time analysis system using EEG to monitor analysts’ processing of textual data during evidence gathering. Both conscious and unconscious ‘interest’ are identified by the neurophysiological sensors based on the analyst’s mental model, as related to specific sentences, indicating relevance to the analysis goal. By monitoring the evidence gathering process through neurophysiological sensors and implementation of real-time strategies, more accurate and efficient extraction of evidence may be achieved. This paper outlines an experiment that focused on identifying distinct changes in EEG signals that can be used to decipher sentences of relevance versus those of irrelevance to a given proposition.

Keywords

EEG Reading Relevancy Alpha Theta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welty, C., Murdock, J.W., Pinheiro da Silva, P., McGuinness, D., Ferrucci, D., Fikes, R.: Tracking information extraction from intelligence documents. In: 2005 International Conference on Intelligence Analysis (IA 2005), McLean, VA, USA (2005)Google Scholar
  2. 2.
    Cowell, D.A.: Social and Collaborative Environments Lead at Pacific Northwest National Laboratory operated by Batelle for US DOE (2006)Google Scholar
  3. 3.
    Pirolli, P., Card, S.: The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis. In: 2005 International Conference on Intelligence Analysis, McLean, Virginia (2005)Google Scholar
  4. 4.
    Jasper, H.H.: The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 10, 371–375 (1958)Google Scholar
  5. 5.
    Hughes, F.J., Schum, D.A.: Evidence Marshaling and Argument Construction – Case Study #1: The Case of General Alpha: Facing Insurgency? Student Assignment, Joint Military Intelligence College, Defense Intelligence Agency (2006a)Google Scholar
  6. 6.
    Hughes, F.J., Schum, D.A.: Evidence Marshaling and Argument Construction – Case Study #2: The Case of Wigmore vs. Al-Quaeda. Student Assignment, Joint Military Intelligence College, Defense Intelligence Agency (2006b)Google Scholar
  7. 7.
    Berka, C., et al.: Real-time Analysis of EEG Indices of Alertness, Cognition, and Memory Acquired with a Wireless EEG Headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)CrossRefGoogle Scholar
  8. 8.
    Bastiaansen, M., Berkum, J., Hagoort, P.: Event-Related Theta Power Increases in the Human EEG During Online Sentence Processing. Neuroscience Letters 323, 13–16 (2002)CrossRefPubMedGoogle Scholar
  9. 9.
    Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T.: Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 7, 1235–1240 (1996)CrossRefPubMedGoogle Scholar
  10. 10.
    Fink, A., Grabner, R.H., Neuper, C., Neubauer, A.C.: EEG alpha band dissociation with increasing task demands. Cognitive Brain Research 24, 252–259 (2005)Google Scholar
  11. 11.
    Boiten, F., Sergeant, J., Geuze, R.: Event-related desynchronization: the effects of energetic and computational demands. Electroencephalogr. Clin. Neurophysiol. 82, 302–309 (1992)CrossRefPubMedGoogle Scholar
  12. 12.
    Klimesch, W., Schimke, H., Pfurtscheller, G.: Alpha frequency, cognitive load and memory performance. Brain Topography 5, 1–11 (1993)CrossRefGoogle Scholar
  13. 13.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2-3), 169–195 (1999)CrossRefPubMedGoogle Scholar
  14. 14.
    Nunez, L.R., Bickford, R.G.: The relationship of head size to alpha frequency with implications to a brain wave model, Electroencephalography. Clin. Neurophysiol. 44, 344–352 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrienne Behneman
    • 1
  • Natalie Kintz
    • 1
  • Robin Johnson
    • 1
  • Chris Berka
    • 1
  • Kelly Hale
    • 2
  • Sven Fuchs
    • 2
  • Par Axelsson
    • 2
  • Angela Baskin
    • 2
  1. 1.Advanced Brain MonitoringCarlsbadUSA
  2. 2.Design Interactive Inc.OviedoUSA

Personalised recommendations