Transcranial Doppler: A Tool for Augmented Cognition in Virtual Environments

  • Beatriz Rey
  • Mariano Alcañiz
  • Valery Naranjo
  • Jose Tembl
  • Vera Parkhutik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

In this work, we propose the use of Transcranial Doppler Monitoring (TCD) as a tool to measure brain activity during the exposure to virtual environments (VE) that can be used in Augmented Cognition (AugCog) systems. The technique is non-invasive, and can be easily integrated with virtual reality (VR) settings. Its high temporal resolution allows the correlation of changes in brain activity to specific events in the VE. In this paper, the TCD technique is described, and results from two studies developed in our group combining TCD with VR are summarized. Possible applications of TCD in the AugCog field are finally discussed.

Keywords

Augmented Cognition Virtual Reality Transcranial Doppler Neurophysiological Data Cognitive State Assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bainbridge, W.S.: Berkshire Encyclopedia of Human-Computer Interaction. Berkshire Publishing Group, Great Barrington (2004)Google Scholar
  2. 2.
    de Greef, T., van Dongen, K., Grootjen, M., Lindenberg, J.: Augmenting Cognition: Reviewing the Symbiotic Relation Between Man and Machine. In: Schmorrow, D.D., Reeves, L.M. (eds.) HCII 2007 and FAC 2007. LNCS (LNAI), vol. 4565, pp. 439–448. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Vice, J., Lockerd, A., Lathan, C.: Multi-Modal Interfaces for Future Applications of Augmented Cognition. In: Schmorrow, D.D. (ed.) Foundations of Augmented Cognition, pp. 21–27. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  4. 4.
    Alcañiz, M., Botella, C., Rey, B., Baños, R., Lozano, J.A., Lasso de la Vega, N., Castilla, D., Montesa, J., Hospitaler, A.: EMMA: An Adaptive Display for Virtual Therapy. In: Schmorrow, D.D., Reeves, L.M. (eds.) HCII 2007 and FAC 2007. LNCS (LNAI), vol. 4565, pp. 258–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Reeves, L.M., Schmorrow, D.D., Stanney, K.M.: Augmented Cognition and Cognitive State Assessment Technology-Near-Term, Mid-Term, and Long-Term Research Objectives. In: Schmorrow, D.D., Reeves, L.M. (eds.) HCII 2007 and FAC 2007. LNCS (LNAI), vol. 4565, pp. 220–228. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Grootjen, M., Neerincx, M.A., van Weert, J.C.M.: Task Based Interpretation of Operator State Information for Adaptive Support. In: ACI/HFES 2006, San Francisco (2006)Google Scholar
  7. 7.
    Veltman, J.A., Gaillard, A.W.K.: Physiological workload reactions to increasing levels of task difficulty. Ergonomics 41, 655–669 (1998)CrossRefGoogle Scholar
  8. 8.
    Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion Recognition Using Bio-Sensors: First Steps Towards an Automatic System. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 36–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Ehlert, P.: Intelligent User Interfaces. DKS03-01 Report, Technical University Delft (2003)Google Scholar
  10. 10.
    Rothkrantz, L.J.M., Wiggers, P., van Wees, J., van Vark, R.J.: Voice stress analysis. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS (LNAI), vol. 3206, pp. 449–456. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    van Kuilenburg, H., Wiering, M., den Uyl, M.J.: A Model Based Method for Automatic Facial Expression Recognition. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 194–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Freeman, F.G., Mikulka, P.J., Prinzel, L.J., Scerbo, M.W.: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol. Psychol. 50, 61–76 (1999)CrossRefPubMedGoogle Scholar
  13. 13.
    Izzetoglu, K., Bunce, S., Onaral, B., Pourrezei, K., Chance, B.: Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks. Int. J. Hum.-Computer Interact. 17, 211–227 (2004)CrossRefGoogle Scholar
  14. 14.
    Aaslid, R., Markwalder, T.M., Nornes, H.: Noninvasive Transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries. J. Neurosurg. 57, 769–774 (1982)CrossRefPubMedGoogle Scholar
  15. 15.
    Stroobant, N., Vingerhoets, G.: Transcranial Doppler Ultrasonography Monitoring of Cerebral Hemodynamics during Performance of Cognitive Tasks: A Review. Neuropsychol. Rev. 10, 213–231 (2000)CrossRefPubMedGoogle Scholar
  16. 16.
    McCartney, J.P., Thomas-Lukes, K.M., Gomez, C.R.: Handbook of Transcranial Doppler. Springer, New York (1997)CrossRefGoogle Scholar
  17. 17.
    Iadecola, C.: Regulation of the Cerebral Microcirculation during Neural Activity: Is Nitric Oxide the Missing Link? Trends Neurosci. 16, 206–214 (1993)CrossRefPubMedGoogle Scholar
  18. 18.
    Risberg, J.: Regional cerebral blood flow in neuropsychology. Neuropsychologia 24, 135–140 (1986)CrossRefPubMedGoogle Scholar
  19. 19.
    Daffertshofer, M.: Functional Doppler testing. In: Hennerici, M., Meairs, S. (eds.) Cerebrovascular Ultrasound, pp. 341–359. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  20. 20.
    Toole, J.F.: Cerebrovascular Disorders, 5th edn. Lippincott Williams & Wilkins, New York (1999)Google Scholar
  21. 21.
    Angevine, J.B., Cotman, C.W.: Principles of neuroanatomy. University Press, New York (1981)Google Scholar
  22. 22.
    Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H.: Arterial territories of the human brain. Cerebral hemispheres. Neurology 50, 1699–1708 (1998)CrossRefPubMedGoogle Scholar
  23. 23.
    Aaslid, R.: Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18, 771–775 (1987)CrossRefPubMedGoogle Scholar
  24. 24.
    Duschek, S., Schandry, R.: Functional Transcranial Doppler sonography as a Tool in Psychophysiological Research. Psychophysiology 40, 436–454 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Troisi, E., Silvestrini, M., Matteis, M., Monaldo, B.C., Vernieri, F., Caltagirone, C.: Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J. Neurol. 246, 1172–1176 (1999)CrossRefPubMedGoogle Scholar
  26. 26.
    Stegagno, L., Patritti, D., Duschek, S., Herbert, B., Schandy, R.: Cerebral blood flow in essential hypotension during emotional activation. Psychophysiol. 44, 232–236 (2007)CrossRefGoogle Scholar
  27. 27.
    Warm, J.S., Matthews, G., Tripp, L., Hancock, P.A.: Cerebral Hemodynamics and Brain Systems in Vigilance. In: Schmorrow, D.D. (ed.) Foundations of Augmented Cognition, pp. 707–708. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  28. 28.
    Warm, J.S., Parasuraman, R.: Cerebral Hemodynamics and Vigilance. In: Parasuraman, R., Rizzo, M. (eds.) Neuroergonomics. The Brain at Work, pp. 146–158. Oxford University Press, New York (2007)Google Scholar
  29. 29.
    Mayleben, D.W.: Cerebral Blood Flow Velocity during Sustained Attention. Unpublished doctoral dissertation, University of Cincinnati, OH (1998)Google Scholar
  30. 30.
    Schnittger, C., Sönke, J., Anouschen, A., Münte, T.F.: Relation of Cerebral Blood Flow Velocity and Level of Vigilance in Humans. Cognitive Neurosci. and Neuropsychol. 8, 1637–1639 (1997)Google Scholar
  31. 31.
    Helton, W.S., Hollander, T.D., Warm, J.S., Tripp, L.D., Parsons, K., Matthews, G., Dember, W.N., Parasuraman, R., Hancock, P.A.: The abbreviated vigilance task and cerebral hemodynamics. J. Clin. and Exp. Neuropsychol. 29, 545–552 (2007)CrossRefGoogle Scholar
  32. 32.
    Hitchcock, E.M., Warm, J.S., Matthews, G., Dember, W.N., Shear, P.K., Tripp, L.D., Mayleben, D.W., Parasuraman, R.: Automation Cueing Modulates Cerebral Blood Flow and Vigilance in a Simulated Air Traffic Control Task. Theor. Issues in Ergon. Sci. 4, 89–112 (2003)CrossRefGoogle Scholar
  33. 33.
    Alcañiz, M., Rey, B., Tembl, J., Parkhutik, V.: A neuroscience approach to virtual reality experience using Transcranial Doppler monitoring. Presence, Teleoperat. & Virtual Environ (in press, 2009)Google Scholar
  34. 34.
    Rey, B., Alcañiz, M., Tembl, J., Parkhutik, V.: Brain Activity and Presence: a Preliminary Study in Different Immersive Conditions Using Transcranial Doppler Monitoring. In: Presence 2008, Padova (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beatriz Rey
    • 1
  • Mariano Alcañiz
    • 1
  • Valery Naranjo
    • 1
  • Jose Tembl
    • 2
  • Vera Parkhutik
    • 2
  1. 1.LabHumanUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Neurology ServiceHospital Universitari La FeValenciaSpain

Personalised recommendations