Tonic Changes in EEG Power Spectra during Simulated Driving

  • Ruey-Song Huang
  • Tzyy-Ping Jung
  • Scott Makeig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

Electroencephalographic (EEG) correlates of driving performance were studied using an event-related lane-departure paradigm. High-density EEG data were analyzed using independent component analysis (ICA) and Fourier analysis. Across subjects and sessions, when reaction time to lane-departure events increased, several clusters of independent component activities in the occipital, posterior parietal, and middle temporal cortex showed tonic power increases in the delta, theta, and alpha bands. The strongest of these tonic power increases occurred in the alpha band in the occipital and parietal regions. Other independent component clusters in the somatomotor and frontal regions showed less or no significant increase in all frequency bands as RT increased. This study demonstrates additional evidence of the close and specific links between cortical brain activities (via changes in EEG spectral power) and performance (reaction time) during sustained-attention tasks. These results may also provide insights into the development of human-computer interfaces for countermeasures for drowsy driving.

Keywords

EEG ICA driving alertness delta theta alpha reaction time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National survey of distracted and drowsy driving attitudes and behavior, vol. 1, DOT HS 809 566 (2002), http://www.nhtsa.dot.gov/people/injury/drowsy_driving1/survey-distractive03/index.htm
  2. 2.
    Drowsy driving and automobile crashes, NCSDR/NHTSA Expert Panel on Driver Fatigue and Sleepiness, http://www.nhtsa.gov/people/injury/drowsy_driving1/Drowsy.html
  3. 3.
    Makeig, S., Inlow, M.: Lapses in alertness: coherence of fluctuations in performance and the EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86, 23–35 (1993)CrossRefPubMedGoogle Scholar
  4. 4.
    Makeig, S., Jung, T.P.: Changes in alertness are a principal component of variance in the EEG spectrum. NeuroReport 7, 213–216 (1995)CrossRefPubMedGoogle Scholar
  5. 5.
    Makeig, S., Jung, T.P.: Tonic, phasic and transient EEG correlates of auditory awareness in drowsiness. Cogn. Brain Res. 4, 15–25 (1996)CrossRefGoogle Scholar
  6. 6.
    Jung, T.P., Makeig, S., Stensmo, M., Sejnowski, T.J.: Estimating alertness from the EEG power spectrum. IEEE Trans. Biomed. Eng. 44, 60–69 (1997)CrossRefPubMedGoogle Scholar
  7. 7.
    Makeig, S., Jung, T.P., Sejnowski, T.J.: Awareness during drowsiness: dynamics and electrophysiological correlates. Canadian J. Exp. Psy. 54, 266–273 (2000)CrossRefGoogle Scholar
  8. 8.
    Schier, M.A.: Changes in EEG alpha power during simulated driving: a demonstration. Int. J. Psychophysiol. 37, 155–162 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Huang, R.S., Tsai, L.L., Kuo, C.J.: Selection of valid and reliable EEG features for predicting auditory and visual alertness levels. Proc. Natl. Sci. Counc. Repub. China B Life Sci. 25, 17–25 (2001)Google Scholar
  10. 10.
    Lal, S.K., Craig, A.: Driver fatigue: electroencephalography and psychological assessment. Psychophysiol. 39, 313–321 (2002)CrossRefGoogle Scholar
  11. 11.
    Lal, S.K., Craig, A.: Reproducibility of the spectral components of the electroencephalogram during driver fatigue. Int. J. Psychophysiol. 55, 137–143 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Huang, R.S., Jung, T.P., Duann, J.R., Makeig, S., Sereno, M.I.: Imaging brain dynamics during continuous driving using independent component analysis. In: 35th Annual Meeting of the Society for Neuroscience, Washington D.C. (2005)Google Scholar
  13. 13.
    Huang, R.S., Jung, T.P., Makeig, S.: Multi-scale EEG brain dynamics during sustained attention tasks. In: Proc. IEEE ICASSP 2007, vol. IV, pp. 1173–1176 (2007)Google Scholar
  14. 14.
    Huang, R.S., Jung, T.P., Makeig, S.: Event-related brain dynamics in continuous sustained-attention tasks. In: Schmorrow, D.D., Reeves, L.M. (eds.) HCII 2007 and FAC 2007. LNCS (LNAI), vol. 4565, pp. 65–74. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Huang, R.S., Jung, T.P., Delorme, A., Makeig, S.: Tonic and phasic electro-encephalographic dynamics during continuous compensatory tracking. NeuroImage 39, 1896–1909 (2008)CrossRefPubMedGoogle Scholar
  16. 16.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134, 9–21 (2004)CrossRefGoogle Scholar
  17. 17.
    Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput. 11, 417–441 (1999)CrossRefPubMedGoogle Scholar
  19. 19.
    Jung, T.P., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Makeig, S., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiol. 37, 163–178 (2000)CrossRefGoogle Scholar
  20. 20.
    Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J.: Imaging brain dynamics using independent component analysis. Proc. IEEE 89, 1107–1122 (2001)CrossRefGoogle Scholar
  21. 21.
    Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., Sejnowski, T.J.: Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    Makeig, S., Delorme, A., Westerfield, M., Jung, T.P., Townsend, J., Courchesne, E., Sejnowski, T.J.: Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol. 2, 747–762 (2004)CrossRefGoogle Scholar
  23. 23.
    Onton, J., Westerfield, M., Townsend, J., Makeig, S.: Imaging human EEG dynamics using independent component analysis. Neurosci. Biobehav. Rev. 30, 808–822 (2006)CrossRefPubMedGoogle Scholar
  24. 24.
    Lin, C.T., Wu, R.C., Jung, T.P., Liang, S.F., Huang, T.Y.: Estimating alertness level based on EEG spectrum analysis. EURASIP J. Appl. Signal Process. 19, 3165–3174 (2005)CrossRefGoogle Scholar
  25. 25.
    Lin, C.T., Wu, R.C., Liang, S.F., Huang, T.Y., Chao, W.H., Chen, Y.J., Jung, T.P.: EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circuit Sys. 52, 2726–2738 (2005)CrossRefGoogle Scholar
  26. 26.
    Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V.: Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J. Neurosci. 20, RC63 (2000)Google Scholar
  27. 27.
    Rimini-Doering, M., Altmueller, T., Ladstaetter, U., Rossmeier, M.: Effects of lane departure warning on drowsy drivers’ performance and state in a simulator. In: Proceedings of the Third International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design, pp. 88–95 (2005)Google Scholar
  28. 28.
    Kozak, K., Pohl, J., Birk, W., Greenberg, J., Artz, B., Bloomer, M., Cathey, L., Curry, R.: Evaluation of lane departure warnings for drowsy drivers. In: Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting, pp. 2400–2404 (2006)Google Scholar
  29. 29.
    Navarro, J., Mars, F., Hoc, J.M.: Lateral control assistance for car drivers: a comparison of motor priming and warning systems. Hum. Factors 49, 950–960 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    Kullack, A., Ehrenpfordt, I., Lemmer, K., Eggert, F., Reflekt, A.S.: Lane departure prevention system based on behavioural control. IET Intell. Transp. Syst. 2, 285–293 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ruey-Song Huang
    • 1
  • Tzyy-Ping Jung
    • 1
  • Scott Makeig
    • 1
  1. 1.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of California San DiegoLa JollaUSA

Personalised recommendations