Converging Minds: Assessing Team Performance Using Psychophysiological Measures

  • Aniket A. Vartak
  • Siddharth S. Somvanshi
  • Cali M. Fidopiastis
  • Denise Nicholson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

Effective teams are an integral component to the success and the advancement of any organization. This issue emphasizes the need to develop valid measures for team performance especially in operational environments. The use of psychophysiological data has been proposed as a candidate for developing these team-level measures. In this paper, we review past research in the field and discuss two contrasting approaches to model human cognition used in the context of teams. We then propose a test-bed for evaluating these models for human-in-the loop adaptive systems using psychophysiological measures.

Keywords

Team Performance Team Cognition Psychophysiology Social Cybernetics Information Processing Closed-Loop Human Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathieu, J., Heffner, T., Goodwin, G., Salas, E., Cannon-Bowers, J.: The influence of shared mental models on team process and performance. Journal of Applied Psychology 85(2), 273–283 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Kennedy, W., Trafton, J.: Using Simulations to Model Shared Mental Models. In: Proceedings of the Eighth International Conference on Cognitive Modeling. Taylor & Francis Psychology Press, Ann Arbor (2007)Google Scholar
  3. 3.
    Lee, M., Johnson, T., Lee, Y., O’Connor, D., Mohammed, K.: The Conceptual Framework of Factors Affecting Shared Mental Model. In: 27th Association for Educational Communications and Technology, Chicago, IL (2004)Google Scholar
  4. 4.
    Fiore, S., Salas, E.: Why we need team cognition, in Team Cognition: Understanding the Factors that Drive Process and Performance. In: Fiore, S., Salas, S. (eds.) American Psychological Association, Washington, DC, pp. 235–248 (2004)Google Scholar
  5. 5.
    Mohommed, S., Klimoski, R., Rentsch, J.: The Measurement of Team Mental Models: We Have No Shared Schema. Organizational Research Method 3(2), 123–165 (2000)CrossRefGoogle Scholar
  6. 6.
    Kiekel, P., Cooke, N., Foltz, P., Shope, S.: Automating Measurement of Team Cognition through Analysis of Communication Data. In: Smith, M., et al. (eds.) Usability Evaluation and Interface Design, pp. 1382–1386. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  7. 7.
    Henning, R., Boucsein, W., Gil, M.: Social-physiological compliance as a determinant of team performance. International Journal of Psychophysiology 40, 221–232 (2001)CrossRefPubMedGoogle Scholar
  8. 8.
    Smith, T., Henning, R.: Cybernetics of Augmented Cognition as an alternative to Information Processing. In: Schmorrow, D. (ed.) Foundations of Augmented Cognition, pp. 641–650. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  9. 9.
    Henning, R., Boucsein, W., Fekieta, R., Gil, M., Li, Q., Pratt, J.: Team biocybernetics based on social psychophysiology. In: Proceedings of PIE 2000, San Diego, CA (2000)Google Scholar
  10. 10.
    Vartak, A., Fidopiastis, C., Nicholson, D., Mikhael, W., Schmorrow, D.: Cognitive State Estimation for Adaptive Learning Systems using Wearable Physiological Sensors. In: First International Conference on Biomedical Electronics and Devices (Biosignals 2008), Funchal, Madeira, Portugal, pp. 147–152 (2008)Google Scholar
  11. 11.
    Henning, R., Smith, T., Korbelak, K.: Social psyphyiological compliance as a gauge of teamwork. In: Schmorrow, D. (ed.) Augmented Cognition, pp. 1228–1238. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  12. 12.
    Raley, C., Stripling, R., Kruse, A., Schmorrow, D., Patrey, J.: Augmented Cognition Overview: Improving Information Intake Under Stress. In: Proceedings of the Human Factors and Ergonomics Society (2004)Google Scholar
  13. 13.
    Wright, M., Kaber, D.: Effects of Automation of Information-Processing Functions on Teamwork. Human Factors 47(1), 50–66 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–183. Elsevier Science North Holland, Amsterdam (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aniket A. Vartak
    • 1
  • Siddharth S. Somvanshi
    • 1
  • Cali M. Fidopiastis
    • 1
  • Denise Nicholson
    • 1
  1. 1.Institute for Simulation and TrainingOrlandoUSA

Personalised recommendations