Modeling the Cognitive Task Load and Performance of Naval Operators

  • Mark A. Neerincx
  • Stefan Kennedie
  • Marc Grootjen
  • Franc Grootjen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)


Operators on naval ships have to act in dynamic, critical and high-demand task environments. For these environments, a cognitive task load (CTL) model has been proposed as foundation of three operator support functions: adaptive task allocation, cognitive aids and resource feedback. This paper presents the construction of such a model as a Bayesian network with probability relationships between CTL and performance. The network is trained and tested with two datasets: operator performance with an adaptive user interface in a lab-setting and operator performance on a high-tech sailing ship. The “Naïve Bayesian network” tuned out to be the best choice, providing performance estimations with 86% and 74% accuracy for respectively the lab and ship data. Overall, the resulting model nicely generalizes over the two datasets. It will be used to estimate operator performance under momentary CTL-conditions, and to set the thresholds of the load-mitigation strategies for the three support functions.


mental load emotion Bayesian networks cognitive engineering Defense and Space operations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neerincx, M.A.: Cognitive task load design: model, methods and examples. In: Hollnagel, E. (ed.) Handbook of Cognitive Task Design, ch. 13, pp. 283–305. Lawrence Erlbaum Associates, Mahwah (2003)CrossRefGoogle Scholar
  2. 2.
    Grootjen, M., Neerincx, M.A., Stolk, K.D., van Weert, J.C.M., Bierman, E.P.B.: Design and user evaluation of an interface prototype that adapts to the operator’s cognitive task load. In: Schmorrow, D.D., Nicholson, D.M., Drexler, J.M., Reeves, L.M. (eds.) Proc. 4th Intern. Augmented Cognition, pp. 97–106. Strategic Analysis, Inc., Arlington (2007)Google Scholar
  3. 3.
    Neerincx, M.A., Bos, A., Olmedo-Soler, A., Brauer, U., Breebaart, L., Smets, N., Lindenberg, J., Grant, T., Wolff, M.: The Mission Execution Crew Assistant: Improving Human-Machine Team Resilience for Long Duration Missions. In: Proc. of the 59th International Astronautical Congress (IAC2008), 12 pages. IAF, Paris (2008), DVD: ISSN 1995-6258Google Scholar
  4. 4.
    Neerincx, M.A.: Modelling Cognitive and Affective Load for the Design of Human-Machine Collaboration. In: Harris, D. (ed.) HCII 2007 and EPCE 2007. LNCS, vol. 4562, pp. 568–574. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Truong, K.P., van Leeuwen, D.A., Neerincx, M.A.: Unobtrusive Multimodal Emotion Detection in Adaptive Interfaces: Speech and Facial Expressions. In: Schmorrow, D.D., Reeves, L.M. (eds.) HCII 2007 and FAC 2007. LNCS (LNAI), vol. 4565, pp. 354–363. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bradley, M., Lang, P.: Measuring emotion: The Self-Assessment Manikin and the Semantic Differential. Journal of Behavioral Therapy & Experimental Psychiatry 25, 49–59 (1994)CrossRefGoogle Scholar
  7. 7.
    Grootjen, M., Reijenga, Y., Neerincx, M.A.: A user evaluation of an interface that adapts to the user’s cognitive task load (to appear)Google Scholar
  8. 8.
    Grootjen, M., de Greef, T., Neerincx, M.A.: Effects of Level of Automation on Operator Task Load and Performance on a Sailing Naval Ship (to appear)Google Scholar
  9. 9.
    Dash, D., Druzdzel, M.: A hybrid anytime algorithm for the construction of causal models from sparse data. In: Proc. 15th Annual Conference on Uncertainty in Artificial Intelligence, pp. 142–149. Morgan Kaufmann, San Francisco (1999)Google Scholar
  10. 10.
    Spirtes, P., Glymour, C.N., Scheines, R., Causation: Prediction, and Search. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mark A. Neerincx
    • 1
    • 2
  • Stefan Kennedie
    • 1
    • 5
  • Marc Grootjen
    • 2
    • 3
  • Franc Grootjen
    • 4
    • 5
  1. 1.TNO Human FactorsSoesterbergThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.Defense Materiel Organization, Directorate Materiel Royal Netherlands NavyThe HagueThe Netherlands
  4. 4.Donders Centre for CognitionRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Radboud University NijmegenThe Netherlands

Personalised recommendations