Skip to main content

Eye Movement as Indicators of Mental Workload to Trigger Adaptive Automation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5638)

Abstract

This research describes an approach to objective assessment of mental workload, by analyzing differences in pupil diameter and several aspects of eye movement (fixation time, saccade distance, and saccade speed) under different levels of mental workload. In an experiment, these aspects were measured by an eye-tracking device to examine whether these are indeed indicators for mental workload. Pupil diameter and fixation time both show a general significant increase if the mental workload increases while saccade distance and saccade speed do not show any significant differences. This assessment of mental workload could be a trigger for aiding the operator of an information system, in order to meet operational requirements.

Keywords

  • mental workload
  • adaptive automation
  • eye movement
  • pupil diameter
  • saccade
  • fixation time

References

  1. Cannon-Bowers, J.A., Salas, E.: Making decisions under stress: implications for individual and team training. American Psychological Association, Washington (1998)

    CrossRef  Google Scholar 

  2. Scerbo, M.: Theoretical perspectives on adaptive automation. In: Parasuraman, R., Mouloua, M. (eds.) Automation and human performance: theory and applications, pp. 37–63. Lawrence Erlbaum Associated Publishers, Mahwah (1996)

    Google Scholar 

  3. Rouse, W.B.: Adaptive Aiding for Human/Computer Control. Human Factors 30, 431–443 (1988)

    Google Scholar 

  4. Endsley, M., Kiris, E.: The Out-of-the-Loop Performance Problem and Level of Control in Automation. Human Factors, 381–394 (1995)

    Google Scholar 

  5. Parasuraman, R., Mouloua, M., Molloy, R.: Effects of adaptive task allocation on monitoring of automated systems. Human Factors 38, 665–679 (1996)

    CAS  CrossRef  PubMed  Google Scholar 

  6. Inagaki, T.: Situation-adaptive autonomy for time-critical takeoff decisions. International Journal of Modelling and Simulation 20, 175–180 (2000)

    Google Scholar 

  7. Arciszewski, H.F.R., de Greef, T.E., van Delft, J.H.: Adaptive Automation in a Naval Combat Management System. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans (in press)

    Google Scholar 

  8. Moray, N., Inagaki, T., Itoh, M.: Adaptive Automation, Trust, and Self-Confidence in Fault Management of Time-Critical Tasks. Journal of experimental psychology, 44–57 (2000)

    Google Scholar 

  9. Bailey, N.R., Scerbo, M.W., Freeman, F.G., Mikulka, P.J., Scott, L.A.: Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation. Human Factors 48, 693–709 (2006)

    CrossRef  PubMed  Google Scholar 

  10. Wilson, G.F., Russell, C.A.: Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Human Factors 49, 1005–1018 (2007)

    CrossRef  PubMed  Google Scholar 

  11. Byrne, E.A., Parasuraman, R.: Psychophysiology and adaptive automation. Biological Psychology 42, 249–268 (1996)

    CAS  CrossRef  PubMed  Google Scholar 

  12. Veltman, J.A., Gaillard, A.W.K.: Physiological workload reactions to increasing levels of task difficulty. Ergonomics 41, 656–669 (1998)

    CAS  CrossRef  PubMed  Google Scholar 

  13. Prinzel, L.J., Freeman, F.G., Scerbo, M.W., Mikulka, P.J., Pope, A.T.: A closed-loop system for examining psychophysiological measures for adaptive task allocation. International Journal of Aviation Psychology 10, 393–410 (2000)

    CAS  CrossRef  PubMed  Google Scholar 

  14. Weert, J.C.M.: Ship operator workload assessment tool. Department of mathematics and computer science. Technical University Eindhoven, Eindhoven (2006)

    Google Scholar 

  15. Veltman, J.A., Gaillard, A.W.D.: Pilot workload evaluated with subjective and physiological measures. In: Brookhuis, K.A., Weikert, C., Moraal, J., de Waard, D. (eds.) Proceedings of the European Chapter of the Human Factors and Ergonomics Society, Soesterberg, the Netherlands (1996)

    Google Scholar 

  16. Brookings, J.B., Wilson, G.F., Swain, C.R.: Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology 42, 361–377 (1996)

    CAS  CrossRef  PubMed  Google Scholar 

  17. Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task-evoked pupillary response to mental workload in human-computer interaction. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, Vienna, Austria, pp. 1477–1480 (2004)

    Google Scholar 

  18. van Orden, K.F., Limbert, W., Makeig, S., Jung, T.: Eye activity correlates of workload during a visuospatial memory task. Human Factors 43, 111–121 (2001)

    CrossRef  PubMed  Google Scholar 

  19. Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin 91, 276–292 (1982)

    CAS  CrossRef  PubMed  Google Scholar 

  20. Tole, J.R., Harris, R.L., Stephens, A.T., Ephrath, A.R.: Visual scanning behavior and mental workload in aircraft pilots. Aviation, Space, and Environmental Medicine 53, 54–61 (1982)

    CAS  PubMed  Google Scholar 

  21. Kramer, A.F.: Physiological metrics of mental workload: A review of recent progress. In: Damos, D.L. (ed.) Multiple-task performance, Taylor & Francis, London (1991)

    Google Scholar 

  22. Henderson, J.M.: Visual attention and eye movement control during reading and picture viewing. In: Rayner, K. (ed.) Eye movements and visual cognition - Scene perception and reading, pp. 260–283. Springer, New York (1992)

    CrossRef  Google Scholar 

  23. Stern, J.A.: The pupil of the eye: what can it tell about mental processes? Human engineering for quality and life 8, 1–2 (1997)

    Google Scholar 

  24. Neerincx, M.A.: Cognitive task load design: model, methods and examples. In: Hollnagel, E. (ed.) Handbook of Cognitive Task Design, pp. 283–305. Lawrence Erlbaum Associates, Mahwah (2003)

    CrossRef  Google Scholar 

  25. Boer, L.C.: Workload-watch as an element of human engineering testing and Evaluation. In: Eleventh ship control systems symposium, vol. 2, Computational mechanics publications, Southampton, United Kindom (1997)

    Google Scholar 

  26. Rasmussen, J.: Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering. North-Holland, Amsterdam (1986)

    Google Scholar 

  27. Neerincx, M.A., Besouw, N.J.P.: Cognitive task load: a function of time occupied, level of information processing and task-set switches. Industrial Ergonomics, HCI, and Applied Cognitive Psychology 6, 247–254 (2001)

    Google Scholar 

  28. Grootjen, M., Neerincx, M.A., Veltman, J.A.: Cognitive task load in a naval ship control centre: From identification to prediction. Ergonomics 49, 1238–1264 (2006)

    CAS  CrossRef  PubMed  Google Scholar 

  29. Goldberg, J.H., Kotval, X.P.: Eye movement-based evaluation of the computer interface. In: Kumar, S. (ed.) Advances in occupational ergonomics and safety, pp. 529–532. ISO press, Amsterdam (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Greef, T., Lafeber, H., van Oostendorp, H., Lindenberg, J. (2009). Eye Movement as Indicators of Mental Workload to Trigger Adaptive Automation. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds) Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. FAC 2009. Lecture Notes in Computer Science(), vol 5638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02812-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02812-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02811-3

  • Online ISBN: 978-3-642-02812-0

  • eBook Packages: Computer ScienceComputer Science (R0)