Potential and Challenges of Body Area Networks for Affective Human Computer Interaction

  • Julien Penders
  • Bernard Grundlehner
  • Ruud Vullers
  • Bert Gyselinckx
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)


The Human++ program aims at achieving highly miniaturized, wireless, intelligent and autonomous body sensor nodes to assist our health, comfort and lifestyle. In this paper the concept of body area network is applied to wireless monitoring of emotions, thus opening a new, affective, dimension in human computer interaction. A prototype body area network targeting the monitoring of physiological responses from the autonomous system is introduced, and tested for the classification of discrete emotions. Using data fusion and regression analysis, we show that the wireless physiological data can be mapped in real-time to an estimation of an individual’s arousal level. Results in a controlled environment are presented, and specific challenges that need to be overcome for a widespread use of the technology are discussed. Finally, we show how advances in micro-power generation devices may lead to fully autonomous systems in the future.


Ambulatory Body area networks Emotion monitoring Ultra-low-power Wireless 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penders, J., Gyselinckx, B., et al.: Human++: from technology to emerging health monitoring concepts. In: Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, June 1-3, pp. 94–98. The Chinese University of Hong Kong, China (2008)Google Scholar
  2. 2.
    Cacioppo, J.T., Berntson, G.G.: Relationships between attitudes and evaluative space: A critical review with emphasis on the separability of positive and negative substrates. Psychological Bulletin 115, 401–423 (1994)CrossRefGoogle Scholar
  3. 3.
    Plutchik, R.: Emotion: Theory, research and experience, ch. 1. Theories of emotion, vol. 1, pp. 3–31. Academic Press, New York (1980)CrossRefGoogle Scholar
  4. 4.
    Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39, 1281–1288 (1980)Google Scholar
  5. 5.
    De Silva, L.C., Miyasato, T., Nakatsu, R.: Facial emotion recognition using multimodal information. In: Proc. IEEE Int. Conf. on Information, Communications and Signal Processing (ICICS 1997), Singapore, September 1997, pp. 397–401 (1997)Google Scholar
  6. 6.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollilas, S., Fellenz, W., Taylor, J.: Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18(1), 32–80 (2001)CrossRefGoogle Scholar
  7. 7.
    Fernandez, R., Picard, R.W.: Classical and novel discriminant features for affect recognition from speech. In: Proc. of Interspeech 2005 (September 2005)Google Scholar
  8. 8.
    Kreibig, S.D., Wilhelm, F.H., Roth, W.T., Gross, J.J.: Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology 44(5), 787–806 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Picard, R., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affec-tive physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  10. 10.
    Bailenson, J.N., Pontikakis, E.D., Mauss, I.B., Gross, J.J., Jabon, M.E., Hutcherson, C.A., Nass, C., John, O.: Real-time classification of evoked emotions using facial feature tracking and physiological responses. International Journal of Human-Computer Studies 66, 303–317 (2008)CrossRefGoogle Scholar
  11. 11.
    Yazicioglu, R.F., Merken, P., Puers, R., et al.: A 60 μW 60 nV/√Hz Readout Front-End for Port-able Biopotential Acquisition Systems. IEEE J. Solid-State Circuits, 1100–1110 (May 2007)Google Scholar
  12. 12.
    Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cognition and Emotion 9(1), 87–108 (1995)CrossRefGoogle Scholar
  13. 13.
    Brown, L., Grundlehner, B., van de Molengraft, J., Penders, J., Gyselinckx, B.: Body Area Networks for monitoring autonomous nervous system responses (in press)Google Scholar
  14. 14.
    Lisetti, C.L., Nasoz, F.: Using noninvasive wearable computers to recognise human emotions from physiological signals. EURASIP Journal on Applied Signal Processing 11, 1672–1687 (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)CrossRefPubMedGoogle Scholar
  16. 16.
    Collet, C., Vernet-Maury, E., Delhomme, G., Dittmar, A.: Autonomic nervous system response patterns specificity to basic emotions. J. Auton. Nerv. Syst. 62(1-2), 45–57 (1997)CrossRefPubMedGoogle Scholar
  17. 17.
    Grundlehner, B., Brown, L., Penders, J., Gyselinckx, B.: The design and analysis of real-time, continuous arousal monitor (in press)Google Scholar
  18. 18.
    Stroop, J.R.: Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 643–663 (1935)CrossRefGoogle Scholar
  19. 19.
    Ruffini, G., et al.: First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensors and Actuators A: Physical 144(2), 275–279 (2008)CrossRefGoogle Scholar
  20. 20.
    Christiaens, W., Loeher, T., Pahl, B., Feil, M., Vandevelde, B., Vanfleteren, J.: Embedding and assembly of ultrathin chips in multilayer flex boards. J. Circuit World 34(3), 3–8 (2008)CrossRefGoogle Scholar
  21. 21.
    Brosteaux, D., Axisa, F., Gonzalez, M., Vanfleteren, J.: Design and Fabrication of Elastic Inter-connections for Stretchable Electronic Circuits. IEEE Electron. Device Letters 28(7), 552–554 (2007)CrossRefGoogle Scholar
  22. 22.
    Torfs, T., Leonov, V., Vullers, R.J.M.: Pulse Oximeter Fully Powered by Human Body Heat. Sensors & Transducers Journal 80(6), 1230–1238 (2007)Google Scholar
  23. 23.
    Leonov, V., Gyselinckx, B., Van Hoof, C., Torfs, T., Yazicioglu, F., Vullers, R.J.M., Fiorini, P.: Wearable self-powered wireless devices with thermoelectric energy scavengers. In: Proceed. Conf. Smart Systems Integration, Barcelona, April 9-10, pp. 217–224 (2008)Google Scholar
  24. 24.
    Van Bavel, M., Leonov, V., Yazicioglu, R.F., Torfs, T., Van Hoof, C., Posthuma, N., Vullers, R.J.M.: Wearable Battery-Free Wireless 2-Channel EEG Systems Powered by Energy Scavengers. Sensors & Transducers 94(7), 103–115 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Julien Penders
    • 1
  • Bernard Grundlehner
    • 1
  • Ruud Vullers
    • 1
  • Bert Gyselinckx
    • 1
  1. 1.Holst Centre / IMEC-NLEindhovenThe Netherlands

Personalised recommendations