Context-Aware Team Task Allocation to Support Mobile Police Surveillance

  • Jan Willem Streefkerk
  • Myra van Esch-Bussemakers
  • Mark Neerincx
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

To optimally distribute tasks within police teams during mobile surveillance, a context-aware task allocation system is designed and evaluated with end-users. This system selects and notifies appropriate team members of current incidents, based on context information (officer availability, officer proximity to the incident and incident priority) and decision rules. Eight teams of three experienced police officers evaluated this system in a surveillance task through a virtual environment, comparing it to a non-adaptive system. Task performance, communication, workload and preferences were measured. Results show that team communication, decision making and response times improve using the adaptive system and that this system is preferred. We conclude that context-aware task allocation helps police teams to coordinate incidents efficiently.

Keywords

Context-aware computing mobile computing police surveillance task allocation notification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferscha, A.: Workspace awareness in mobile virtual teams. In: Proc. of WET ICE 2000, Gaithersburg, MD, USA, pp. 272–277 (2000)Google Scholar
  2. 2.
    Streefkerk, J.W., Wiering, C., Esch-Bussemakers, M., Neerincx, M.: Effects of Presentation Modality on Team Awareness and Choice Accuracy in a Simulated Police Team Task. In: Proceedings HFES, vol. 52, pp. 378–382. HFES, New York City (2008)Google Scholar
  3. 3.
    Jameson, A.: Modeling Both the Context and the User. Pers. & U. Comp. 5, 29–33 (2001)CrossRefGoogle Scholar
  4. 4.
    Streefkerk, J.W., Esch-Bussemakers, M., Neerincx, M.: Context-Aware Notification for Mobile Police Officers. In: Harris, D. (ed.) HCII 2007 and EPCE 2007. LNCS, vol. 4562, pp. 436–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Adkins, M., Kruse, J., Younger, R.: Ubiquitous computing: omnipresent technology in support of Network Centric Warfare. In: Proc. of HISS, pp. 551–559 (2002)Google Scholar
  6. 6.
    Smets, N., Te Brake, G., Lindenberg, J., Neerincx, M.: Influence of mobile map size and user capacities on situation awareness tested in a virtual environment. In: Proc of ISCRAM 2007, pp. 557–564 (2007)Google Scholar
  7. 7.
    Oulasvirta, A., Petit, R., Raento, M., Tiitta, S.: Interpreting and Acting on Mobile Awareness Cues. Human-Computer Interaction 22, 97–135 (2007)Google Scholar
  8. 8.
    Carroll, J.M., Rosson, M.B., Convertino, G., Ganoe, C.H.: Awareness and teamwork in computer-supported collaborations. Int. with comp. 18, 21–46 (2006)Google Scholar
  9. 9.
    Kaber, D., Endsley, M.: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Th. Iss. in Erg. Sc. 5, 113–153 (2004)CrossRefGoogle Scholar
  10. 10.
    Dey, A., Abowd, G., Salber, D.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Hum.-Comp. Int. 16, 97–166 (2001)CrossRefGoogle Scholar
  11. 11.
    Jiang, X., Chen, N., Hong, J., Wang, K., Takayama, L., Landay, J.: Siren: Context-aware Computing for Firefighting. In: Proc. of Pervasive, Vienna, Austria (2004)Google Scholar
  12. 12.
    Camp, P., Hudson, J., Keldorph, R., Lewis, S., Mynatt, E.: Supporting Communication and Collaboration Practices in Safety-Critical Situations. In: Proc. CHI, pp. 249–250 (2000)Google Scholar
  13. 13.
    Aziz, Z., Anumba, C., Ruikar, D., Carrillo, P., Bouchlaghem, N.: Intelligent wireless web services for construction—A review of the enabling technologies. Automation in Construction 15, 113–123 (2006)CrossRefGoogle Scholar
  14. 14.
    Nulden, U.: Investigating police patrol practice for design of IT. In: Proc. of CHI 2003, pp. 820–821 (2003)Google Scholar
  15. 15.
    Arciszewski, H., de Greef, T., van Delft, J.: Adaptive Automation in a Naval Combat Management System. IEEE SMCA (in press)Google Scholar
  16. 16.
    Cummings, M.: Automation Bias in Intelligent Time Critical Decision Support Systems. In: Proc. of AIAA Intelligent Systems, Chicago, IL, USA (2004)Google Scholar
  17. 17.
    Weibelzahl, S.: Problems and Pitfalls in Evaluating Adaptive Systems. In: Chen, Magoulas (eds.) Adaptable and Adaptive Hypermedia Systems, pp. 285–299. IRM (2005)Google Scholar
  18. 18.
    Streefkerk, J.W., Esch-Bussemakers, M., Neerincx, M.: Field evaluation of a mobile location-based notification system for police officers. In: Proc. of MobileHCI, pp. 101–108. ACM, Amsterdam (2008)CrossRefGoogle Scholar
  19. 19.
    Streefkerk, J.W., Esch-Bussemakers, M., Neerincx, M., Looije, R.: Evaluating Context-Aware Mobile Interfaces for Professionals. In: Lumsden, J. (ed.) Handbook of Research on User Interface Design and Evaluation for Mobile Technology, pp. 759–779 (2008)Google Scholar
  20. 20.
    Te Brake, G., de Greef, T., Lindenberg, J., Rypkema, J., Smets, N.: Developing adaptive user interfaces using a game-based simulation environment. In: Proc. of ISCRAM (2006)Google Scholar
  21. 21.
    Neerincx, M., Lindenberg, J.: Supporting individual situation awareness in web-environments. In: Pikaar, R. (ed.) Ergonomie in Uitvoering, pp. 144–155. NVvE (1999)Google Scholar
  22. 22.
    Zijlstra, F.: Efficiency in work behavior. A design approach for modern tools. Delft University of Technology (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Willem Streefkerk
    • 1
  • Myra van Esch-Bussemakers
    • 1
  • Mark Neerincx
    • 1
  1. 1.TNO Human FactorsSoesterbergthe Netherlands

Personalised recommendations