Abstract
The Human Centered Design (HCD) of Partial Autonomous Driver Assistance Systems (PADAS) requires Digital Human Models (DHMs) of human control strategies for simulating traffic scenarios. We describe first results to model lateral and longitudinal control behavior of drivers with simple dynamic Bayesian sensory-motor models according to the Bayesian Programming (BP) approach: Bayesian Autonomous Driver (BAD) models. BAD models are learnt from multivariate time series of driving episodes generated by single or groups of users. The variables of the time series describe phenomena and processes of perception, cognition, and action control of drivers. BAD models reconstruct the joint probability distribution (JPD) of those variables by a composition of conditional probability distributions (CPDs). The real-time control of virtual vehicles is achieved by inferring the appropriate actions under the evidence of sensory percepts with the help of the reconstructed JPD.
Chapter PDF
Similar content being viewed by others
Keywords
References
Anderson, J.R.: Learning and Memory. John Wiley, Chichester (2002)
Salvucci, D.D., Gray, R.: A Two-Point Visual Control Model of Steering. Perception 33, 1233–1248 (2004)
Salvucci, D.D.: Integrated Models of Driver Behavior. In: Gray, W.D. (ed.) Integrated models of cognitive systems, pp. 356–367. Oxford University Press, New York (2007)
Jürgensohn, T.: Control Theory Models of the Driver. In: Cacciabue (ed.), pp. 277–292 (2007)
Weir, D.H., Chao, K.C.: Review of Control Theory Models for Directional and Speed Control. In: Cacciabue, P.C., pp. 293–311 (2007)
Möbus, C., Hübner, S., Garbe, H.: Driver Modelling: Two-Point-or Inverted Gaze-Beam-Steering. In: Rötting, M., Wozny, G., Klostermann, A., Huss, J. (Hrsgb) Prospektive Gestaltung von Mensch-Technik-Interaktion, 7. Berliner Werkstatt Mensch-Maschine-Systeme, Berlin, Fortschritt-Berichte VDI-Reihe 22 (Nr. 25), pp. 483–488. VDI Verlag, Düsseldorf (2007)
Möbus, C., Eilers, M.: First Steps Towards Driver Modeling According to the Bayesian Programming Approach, Symposium Cognitive Modeling. In: Urbas, L., Goschke, T., Velichkovsky, B. (eds.) KogWis, vol. 6, p. 59. Christoph Hille, Dresden (2008)
Möbus, C., Eilers, M., Garbe, H., Zilinski, M.: Probabilistic, and Empirical Grounded Modeling of Agents in Partial Cooperative (Traffic) Scenarios. In: Conference Proceedings, HCI 2009, Digital Human Modeling. LNCS (LNAI). Springer, San Diego (2009)
Cacciabue, P.C. (ed.): Modelling Driver Behaviour in Automotive Environments. Springer, London (2007)
Chater, N., Oxford, M. (eds.): The Probabilistic Mind: Prospects for Bayesian Cognitive Science. Oxford University Press, Oxford (2008)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Anderson, J.R., Fincham, J.M., Qin, Y., Stocco, A.: A Central circuit of the mind. Trends in Cognitive Science 12(4), 136–143 (2008)
Bessiere, P., Laugier, C., Siegwart, R. (eds.): Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. Springer, Berlin (2008)
Xu, Y., Lee, K.K.C.: Human Behavior Learning and Transfer. CRC Press, Boca Raton (2006)
Möbus, C., Hübner, S., Garbe, H.: Driver Modelling: Two-Point- or Inverted Gaze-Beam-Steering. In: Rötting, M., Wozny, G., Klostermann, A., Huss, J. (eds.) Prospektive Gestaltung von Mensch-Technik-Interaktion, Fortschritt-Berichte VDI-Reihe 22 (Nr. 25), pp. 483–488. VDI Verlag, Düsseldorf (2007)
Hamker, F.H.: RBF learning in a non-stationary environment: the stability-plasticity dilemma. In: Howlett, R.J., Jain, L.C. (eds.) Radial Basis Function networks 1: Recent Developments in Theory and Applications; Studies in fuzziness and soft computing, ch. 9, vol. 66, pp. 219–251. Physica Verlag, Heidelberg (2001)
Lebeltel, O., Bessiere, P., Diard, J., Mazer, E.: Bayesian Robot Programming. Autonomous Robots 16, 49–79 (2004)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)
Pearl, J.: Causality: Models, Reasoning and Interference, 2nd edn. Cambridge University Press, Cambridge (2009)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2001)
Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Upper Saddle River (2004)
Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, Heidelberg (2007)
Bessiere, P.: Survey: Probabilistic Methodology and Techniques for Artifact Conception and Development, Repport de Recherche, No. 4730, INRIA (2003)
Meila, M., Jordan, M.I.: Learning Fine Motion by Markov Mixtures of Experts, MIT, AI Memo No. 1567 (1995)
Horrey, W.J., Wickens, C.D., Consalus, K.P.: Modeling Driver’s Visual Attention Allocation While Interacting With In-Vehicle Technologies. J. Exp. Psych. 12, 67–78 (2006)
TORCS, http://torcs.sourceforge.net/ (visited 18.10, 2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Möbus, C., Eilers, M. (2009). Further Steps towards Driver Modeling According to the Bayesian Programming Approach. In: Duffy, V.G. (eds) Digital Human Modeling. ICDHM 2009. Lecture Notes in Computer Science, vol 5620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02809-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-02809-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02808-3
Online ISBN: 978-3-642-02809-0
eBook Packages: Computer ScienceComputer Science (R0)