Advertisement

The Physiological User’s Response as a Clue to Assess Visual Variables Effectiveness

  • Mickaël Causse
  • Christophe Hurter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5619)

Abstract

The paper deals with the introduction of Bertin’s visual variables in an ATC context. The ranking of the efficiency of these variables has been experimentally verified by Cleveland, however, no studies highlight the physiological correlates of this ranking. We analyzed behavioral, physiological and subjective data recorded on 7 healthy subjects facing a visual comparison task witch involve 5 selected visual characterizations (angle, text, surface, framed rectangles and luminosity). Results showed that the observed accuracy was coherent with Mackinlay ranking of visual variables. Psychophysiological and subjective measurements are also discussed.

Keywords

Bertin’s visual variables Emotion Mental load Psychophysiological response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertin, J.: Graphics and Graphic Information Processing. deGruyter Press, Berlin (1977)Google Scholar
  2. 2.
    Cleveland, W.S., McGill, R.: Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association 79 (1984)Google Scholar
  3. 3.
    Mackinlay, J.: Applying a theory of graphical presentation to the graphic design of user interfaces. In: UIST (1988)Google Scholar
  4. 4.
    Gaillard, A.W.K.: Stress, workload, and fatigue as three biobehavioural states: a general overview. In: Hancock, P.A., Desmond, P.A. (eds.) Stress, Workload, and Fatigue, pp. 623–639. Erlbaum, Mahwah (2001)Google Scholar
  5. 5.
    Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human–computer interaction. Theoretical Issues in Ergonomic Science 4(1–2), 113–121 (2003)CrossRefGoogle Scholar
  6. 6.
    Iqbal, S., Adamczyk, P., Zheng, X., Bailey, B.: Towards an index of opportunity: understanding changes in mental workload during task execution. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Portland, Oregon, USA (2005)Google Scholar
  7. 7.
    Fairclough, S.-H., Venables, L., Tattersall, A.: The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology 56(2), 171–184 (2005)CrossRefGoogle Scholar
  8. 8.
    Ahlstrom, U., Friedman-Berg, F.J.: Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics 36(7), 623–636 (2006)CrossRefGoogle Scholar
  9. 9.
    Võ, M., Jacobs, A., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., Hutzler, F.: The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology 45, 130–140 (2008)CrossRefGoogle Scholar
  10. 10.
    Causse, M., Pastor, J., Sénard, J.-M., Démonet, J.-F.: Unraveling emotion, difficulty and attentional demand in psychophysiological responses during executive tasks. In: First Meeting of the Federation of the European Societies of Neuropsychology, Edinburgh, Scotland (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mickaël Causse
    • 1
    • 2
    • 3
  • Christophe Hurter
    • 4
    • 5
  1. 1.Inserm; Imagerie cérébrale et handicaps neurologiques UMR 825ToulouseFrance
  2. 2.Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques UMR 825Toulouse Cedex 9France
  3. 3.Spatial and aeronautical center, ISAE-SUPAEROToulouseFrance
  4. 4.IHCS IRIT ToulouseFrance
  5. 5.Direction Technique de l Iinnovation DGAC/DSNA/DTI R&DToulouseFrance

Personalised recommendations