PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5584)


In this paper we present the parallel QBF Solver PaQuBE. This new solver leverages the additional computational power that can be exploited from modern computer architectures, from pervasive multicore boxes to clusters and grids, to solve more relevant instances and faster than previous generation solvers. PaQuBE extends QuBE, its sequential core, by providing a Master/Slave Message Passing Interface (MPI) based design that allows it to split the problem up over an arbitrary number of distributed processes. Furthermore, PaQuBE’s progressive parallel framework is the first to support advanced knowledge sharing in which solution cubes as well as conflict clauses can be shared. According to the last QBF Evaluation, QuBE is the most powerful state-of-the-art QBF Solver. It was able to solve more than twice as many benchmarks as the next best independent solver. Our results here, show that PaQuBE provides additional speedup, solving even more instances, faster.


Parallel QBF Solving Message Passing Master/Slave Architecture MPI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herbstritt, M., Becker, B.: On Combining 01X-Logic and QBF. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 531–538. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem proving. Communication of ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gent, I.P., Rowley, A.G.: Solution learning and solution directed backjumping revisited. Technical Report APES-80-2004, APES Research Group (February 2004),
  6. 6.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning (2008)Google Scholar
  10. 10.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An efficient QBF solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Giunchiglia, E., Marin, P., Narizzano, M.: 24. In: Reasoning with Quantified Boolean Formulas. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009)Google Scholar
  13. 13.
    Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover and its application to quasigroup problems. J. Symb. Comput. 21(4-6), 543–560 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lewis, M., Schubert, T., Becker, B.: QMiraXT – A Multithreaded QBF Solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (January 2009)Google Scholar
  15. 15.
    Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF) solver: theory and practice. In: Tang, T.A. (ed.) ASP-DAC, pp. 1047–1051. ACM Press, New York (2005)CrossRefGoogle Scholar
  16. 16.
    Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate Quantified Boolean Formulae. In: Proc. AAAI (2000)Google Scholar
  17. 17.
    Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lonsing, F., Biere, A.: Nenofex: Expanding nnf for QBF solving. In: Büning, H.K., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Gent, I.P., Hoos, H.H., Rowley, A.G.D., Smyth, K.: Using stochastic local search to solve quantified Boolean formulae. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 348–362. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. AAAI, pp. 255–260 (2007)Google Scholar
  23. 23.
    Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed sat solver for the grid. In: SC 2003: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 37. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  24. 24.
    Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: ASP Design Automation Conf., Yokohama, Japan (January 2007)Google Scholar
  25. 25.
    Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate Quantified Boolean Formulae. In: Proceedings of the 7th Conference on Artificial Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI 2000), July 30-3, pp. 285–290. AAAI Press, Menlo Park (2000)Google Scholar
  26. 26.
    Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22(6), 789–828 (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Snir, M., Otto, S., Walker, D., Dongarra, J., Huss-Lederman, S.: MPI: The Complete Reference. MIT Press, Cambridge (1995)Google Scholar
  28. 28.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library (QBFLIB) (2001),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

There are no affiliations available

Personalised recommendations