Skip to main content

Beyond CNF: A Circuit-Based QBF Solver

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

State-of-the-art solvers for Quantified Boolean Formulas (QBF) have employed many techniques from the field of Boolean Satisfiability (SAT) including the use of Conjunctive Normal Form (CNF) in representing the QBF formula. Although CNF has worked well for SAT solvers, recent work has pointed out some inherent problems with using CNF in QBF solvers.

In this paper, we describe a QBF solver, called CirQit (Cir-Q-it) that utilizes a circuit representation rather than CNF. The solver can exploit its circuit representation to avoid many of the problems of CNF. For example, we show how this approach generalizes some previously proposed techniques for overcoming the disadvantages of CNF for QBF solvers. We also show how important techniques like clause and cube learning can be made to work with a circuit representation. Finally, we empirically compare the resulting solver against other state-of-the-art QBF solvers, demonstrating that our approach can often outperform these solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: Proceedings of the AAAI National Conference (AAAI), pp. 1045–1050 (2007)

    Google Scholar 

  2. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified boolean formulas. In: Proceedings of the AAAI National Conference (AAAI), pp. 417–422. AAAI Press, Menlo Park (2000)

    Google Scholar 

  3. Mangassarian, H., Veneris, A.G., Safarpour, S., Benedetti, M., Smith, D.: A performance-driven QBF-based iterative logic array representation with applications to verification, debug and test. In: International Conference on Computer-Aided Design (ICCAD), pp. 240–245 (2007)

    Google Scholar 

  4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Benedetti, M.: sKizzo: a QBF decision procedure based on propositional skolemization and symbolic reasoning. Technical Report TR04-11-03 (2004)

    Google Scholar 

  7. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In: Proceedings of the International Conference on Theory and Applications of Satisfiability Testing (SAT) (2004)

    Google Scholar 

  8. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.: QuteSAT: a robust circuit-based SAT solver for complex circuit structure. In: Design, Automation and Test in Europe Conference and Exposition (DATE), pp. 1313–1318 (2007)

    Google Scholar 

  9. Sabharwal, A., Ansótegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling: Exploiting player symmetry for simplicity and efficiency. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Zhang, L.: Solving QBF with combined conjunctive and disjunctive normal form. In: Proceedings of the AAAI National Conference (AAAI) (2006)

    Google Scholar 

  11. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic 1967–1970, vol. 2. Springer, Heidelberg (1983); Originally published (1970)

    Google Scholar 

  12. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Tang, D., Malik, S.: Solving quantified boolean formulas with circuit observability don’t cares. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 368–381. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Benedetti, M., Lallouet, A., Vautard, J.: QCSP made practical by virtue of restricted quantification. In: Veloso, M.M. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 38–43 (2007)

    Google Scholar 

  15. Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library (QBFLIB) (2001), www.qbflib.org

  17. Stéphan, I.: Boolean propagation based on literals for quantified boolean formulae. In: 17th European Conference on Artificial Intelligence (2006)

    Google Scholar 

  18. Benedetti, M.: skizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Samulowitz, H., Bacchus, F.: Dynamically partitioning for solving QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 215–229. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding Quantified Boolean Formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goultiaeva, A., Iverson, V., Bacchus, F. (2009). Beyond CNF: A Circuit-Based QBF Solver. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics