Interactive Fluid Simulation Using Augmented Reality Interface

  • Makoto Fujisawa
  • Hirokazu Kato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5622)


This paper presents an interactive fluid simulation system using augmented reality interface. The presented system uses Smoothed Particle Hydrodynamics to simulate the behavior of liquid and adopts a particle-particle interaction approach to calculate the surface tension that becomes important in a small-scale liquid. Fluid-solid interaction can be calculated effectively by representing a solid as a distance function. Therefore, the shape of the solid can be represented precisely without increasing the number of the particles. Moreover, The system can directly operate the solid by augmented reality interface.


real-time fluid simulation surface tension augmented reality interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allard, J., Raffin, B.: Distributed Physical Based Simulations for Large VR Applications. In: VR 2006: Proceedings of the IEEE conference on Virtual Reality, pp. 89–96 (2006)Google Scholar
  2. 2.
    Chae, C., Ko, K.: Introduction of Physics Simulation in Augmented Reality. In: International Symposium on Ubiquitous Virtual Reality, pp. 37–40 (2008)Google Scholar
  3. 3.
    Clavet, S., Beaudoin, P., Poulin, P.: Particle-based Viscoelastic Fluid Simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228 (2005)Google Scholar
  4. 4.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: Proceedings of ACM SIGGRAPH 2002, pp. 736–744 (2002)Google Scholar
  5. 5.
    Harada, T., Koshizuka, S., Kawaguchi, Y.: Improvement of the Boundary Conditions in Smoothed Particle Hydrodynamics. Computer Graphics & Geometry 9(3), 2–15 (2007)Google Scholar
  6. 6.
    Imura, M., Amada, T., Yasumuro, Y., Manabe, Y., Chihara, K.: Synthetic Representation of Virtual Fluid for Mixed Reality. In: Proceedings of 8th International Conference on Virtual Reality, pp. 135–142 (2006)Google Scholar
  7. 7.
    Klingner, B.M., Feldman, B.E., Chentanez, N., O’Brien, J.F.: Fluid animation with dynamic meshes. In: Proceedings of ACM SIGGRAPH 2006, pp. 820–825 (2006)Google Scholar
  8. 8.
    Koshizuka, S., Tamako, H., Oka, Y.: A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal 4(4), 29–46 (1995)Google Scholar
  9. 9.
    Kwatra, V., Mordohai, P., Narain, R., Penta, S.K., Carlson, M., Pollefeys, M., Lin, M.: Fluid in Video: Augmenting Real Video with Simulated Fluids. Computer Graphics Forum (Proc. Eurographics) 27(2), 487–496 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Koshizuka, S., Oka, Y.: A hybrid particle-mesh method for viscous, incompressible, multiphase flows. Journal of Computational Physics 202, 65–93 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics (SIGGRAPH 1987 Proceedings) 21(4), 163–169 (1987)Google Scholar
  12. 12.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: Proceedings of SIGGRAPH 2004, pp. 457–462 (2004)Google Scholar
  13. 13.
    Monaghan, J.J.: An Introduction to SPH. Computer physics communications 48, 89–96 (1988)CrossRefzbMATHGoogle Scholar
  14. 14.
    Nguyen, D., Fedkiw, R., Jensen, H.: Physically based modeling and animation of fire. In: Proceedings of SIGGRAPH 2002, pp. 721–728 (2002)Google Scholar
  15. 15.
    Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999, pp. 121–128 (1999)Google Scholar
  16. 16.
    Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 72(2), 026301 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Makoto Fujisawa
    • 1
  • Hirokazu Kato
    • 1
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyTakayama, IkomaJapan

Personalised recommendations