Advertisement

Development of Non-contact Monitoring System of Heart Rate Variability (HRV) - An Approach of Remote Sensing for Ubiquitous Technology -

  • Satoshi Suzuki
  • Takemi Matsui
  • Shinji Gotoh
  • Yasutaka Mori
  • Bonpei Takase
  • Masayuki Ishihara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5624)

Abstract

The aim of this study was to develop a prototype system to monitor cardiac activity using microwave Doppler radar (24.05 GHz frequency, 7 mW output power in average) without making contact with the body and without removing clothing; namely, a completely noncontact, remote monitoring system. In addition, heart rate and changes in heart rate variability (HRV) during simple mental arithmetic and computer input tasks were observed with the prototype system. The experiment was conducted with seven subjects (23.00 ± 0.82 years old). We found that the prototype system captured heart rate and HRV precisely. The strong relationship between the heart rates during tasks (r = 0.963), LF (cross-correlation = 0.76) and LF/HF (cross-correlation = 0.73) of HRV calculated from the microwave radar data and from electrocardiograph (ECG) measurements were confirmed.

Keywords

noncontact monitoring microwave radar heart rate variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciaccio, E.J., Hiatt, M., Hegyi, T., Drzewiecki, G.M.: Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function. Biomed. Eng. Online 6(13), 1–11 (2007)Google Scholar
  2. 2.
    Jacobs, J., Embree, P., Glei, M., Christensen, S., Sullivan, P.: Characterization of a novel heart and respiratory rate sensor. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3, 2223–2226 (2004)Google Scholar
  3. 3.
    Wang, F., Tanaka, M., Chonan, S.: Development of a wearable mental stress evaluation system using PVDF film sensor. Journal of Advanced Science 18(1&2), 170–173 (2006)CrossRefGoogle Scholar
  4. 4.
    Matsui, T., Hagisawa, K., Ishizuka, T., et al.: A novel method to prevent secondary exposure of medical and rescue personnel to toxic materials under biochemical hazard conditions using microwave radar and infrared thermography. IEEE Trans. Biomed. Eng. 51, 2184–2188 (2004)CrossRefGoogle Scholar
  5. 5.
    Matsui, T., Gotoh, S., Arai, I., Hattori, H., et al.: Noncontact Vital Sign Monitoring System for Isolation Unit (Casualty Care System). Military Medicine 171(7), 639–643 (2006)CrossRefGoogle Scholar
  6. 6.
    Uenoyama, M., Matsui, T., Yamada, K., Suzuki, S., et al.: Non-contact respiratory monitoring system using a ceiling-attached microwave antenna. Med. Biol. Eng. Comput. 44, 835–840 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, K.M., Misra, D., Wang, H., Chuang, H.R., Postow, E.: An X-band microwave life-detection system. IEEE Trans. Biomed. Eng. 33, 697–702 (1986)CrossRefGoogle Scholar
  8. 8.
    Chen, K.M., Huang, Y., Zhang, J.: Microwave Life-Detection Systems for Searching Human Subjects Under Earthquake Rubble or Behind Barrier. IEEE Trans. Biomed. Eng. 27, 105–113 (2000)CrossRefGoogle Scholar
  9. 9.
    Suzuki, S., Matsui, T., Imuta, H., Uenoyama, H., et al.: A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar. Medical & Biological Engineering & Computing 46, 709–714 (2008)CrossRefGoogle Scholar
  10. 10.
    Singh, N., Mironov, D., Armstrong, P.W., Ross, A.M., Langer, A.: Heart Rate Variability Assessment Early After Acute Myocardial Infarction-Pathophysiological and Prognostic Correlates. Circulation 93, 1388–1395 (1996)CrossRefGoogle Scholar
  11. 11.
    Carney, R.M., Blumenthal, J.A., Stein, P.K., Watkins, L., Catellier, D., Berkman, L.F., Czajkowski, S.M., O’Connor, C., Stone, P.H., Freedland, K.E.: Depression, Heart Rate Variability, and Acute Myocardial Infarction. Circulation 104, 2024–2028 (2001)CrossRefGoogle Scholar
  12. 12.
    Lohman, B., Boric-Lubecke, O., Lubecke, V.M., Ong, P.W., Sondhi, M.M.: A digital signal processor for Doppler radar sensing of vital signs. In: Proceedings of the 23rd annual international conference of the EMBS IEEE, pp. 3359–3362 (2001)Google Scholar
  13. 13.
    Ivashov, S.I., Razevig, V.V., Sheyko, A.P., Vasilyev, I.A.: Detection of human breathing and heartbeat by remote radar. In: Progress in Electromagnetic Research Symposium 2004, pp. 663–666 (2004)Google Scholar
  14. 14.
    Thijs, J.A.J., Muehlsteff, J., Such, O., Pinter, R., Elfring, R., Igney, C.H.: A Comparison of Continuous Wave Doppler Radar to Impedance Cardiography for Analysis of Mechanical Heart Activity. In: Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 3482–3485. IEEE, Los Alamitos (2005)Google Scholar
  15. 15.
    Matsui, T., Suzuki, S., Ujikawa, K., Usui, T., Gotoh, S., Sugamata, M., Abe, S.: The development of a non-contact screening system for rapid medical inspection at a quarantine depot using a laser Doppler blood-flow meter, microwave radar, and infrared thermography. Journal of Medical Engineering & Technology (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Satoshi Suzuki
    • 1
  • Takemi Matsui
    • 1
  • Shinji Gotoh
    • 1
  • Yasutaka Mori
    • 1
  • Bonpei Takase
    • 2
  • Masayuki Ishihara
    • 2
  1. 1.Tokyo Metropolitan UniversityTokyoJapan
  2. 2.National Defense Medical CollegeSaitamaJapan

Personalised recommendations