Advertisement

Combined Measurement System for the Evaluation of Multi Causal Strain

  • Holger Steiner
  • Dietmar Reinert
  • Norbert Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5624)

Abstract

This work addresses the problem of measuring psychological strain in humans by the use of physiological data. The aim of the work is the research, development and evaluation of a measurement system for the acquisition of such data from humans and the differentiation of psychological and physical strain with the help of machine learning algorithms. The developed system records and analyzes the ECG, the EMG, as well as the skin conductance, and combines these physiological parameters with the subject’s physical activity. The main purpose of this measurement system is to assess both types of strain in employees at their workplaces.

Keywords

multi causal strain stress strain ambulatory monitoring physiological monitoring physical activity decision tree learning machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cutmore, T., James, D.A.: Sensors and Sensor Systems for Psychophysiological Monitoring: A Review of Current Trends. Journal of Psychophysiology 21(1), 51–71 (2007)CrossRefGoogle Scholar
  2. 2.
    Ellegast, R.-P., Hermanns, I.: Einsatz des Messsystems CUELA zur Erfassung und Bewertung physischer Arbeitsbelastungen. BGIA - Institute for Occupational Health and Safety of the German Social Accident Insurance, Sankt Augustin (2006) http://www.hvbg.de/d/bia/fac/ergonomie/pdf/cuela.pdf
  3. 3.
    Hermanns, I., Post, M.: Das CUELA-Messsystem. Information des Berufsgenossenschaftlichen Instituts für Arbeitsschutz - BGIA, Sankt Augustin (2003), http://www.hvbg.de/d/bia/fac/ergonomie/pdf/text1a.pdf
  4. 4.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, Columbus (1997)zbMATHGoogle Scholar
  5. 5.
    Myrtek, M., Fichtler, A., Strittmatter, M., Brügner, G.: Stress and Strain of Blue and White Collar Workers During Work and Leisure Time: Results of Psychophysiological and Behavioral Monitoring. Applied Ergonomics 30, 341–351 (1999)CrossRefGoogle Scholar
  6. 6.
    Myrtek, M., Foerster, F.: On-Line Measurement of Additional Heart Rate - Methodology and Applications. In: Fahrenberg, J., Myrtek, M. (eds.) Progress in Ambulatory Assessment - Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, pp. 399–414. Hogrefe & Huber Publishers, Göttingen (2001)Google Scholar
  7. 7.
    Russel, S., Norvig, P.: Künstliche Intelligenz. Prentice Hall / Pearson Education, New Jersey (2004)Google Scholar
  8. 8.
    Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego (1999)Google Scholar
  9. 9.
    Steiner, H.: Erfassung von physiologischen Daten mit einem Embedded Controller. BGIA - Institute for Occupational Health and Safety of the German Social Accident Insurance / University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin (2006) http://www.inf.fh-bonn-rhein-sieg.de/data/informatik_/fb_informatik/personen/reinert/steiner.pdf
  10. 10.
    Taelman, J., Adriaensen, T., van der Horst, C., Linz, T., Spaepen, A.: Textile Integrated Contactless EMG Sensing for Stress Analysis. In: Engineering in Medicine and Biology Society, EMBS 2007, 29th Annual International Conference of the IEEE, pp. 3966–3969. IEEE Press, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Vogt, J., Kastner, M.: Psychophysiological Monitoring of Air Traffic Controllers: Exploration, Simulation, Validation. In: Fahrenberg, J., Myrtek, M. (eds.) Progress in Ambulatory Assessment - Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, pp. 455–476. Hogrefe & Huber Publishers, Göttingen (2001)Google Scholar
  12. 12.
    Weber, B., Hermanns, I., Ellegast, R.P., Kleinert, J.: Assessment Of Physical Activity at Workplaces. In: Bust, P. (ed.) Contemporary Ergonomics. Taylor & Francis, Oxfordshire (2008)Google Scholar
  13. 13.
    Wickens, C.D., Gordon, S.E., Liu, Y.: An Introduction to Human Factors Engineering. Addison Wesley Longman, Harlow (1998)Google Scholar
  14. 14.
    Wilson, G.: In-Flight Psychophysiological Monitoring. In: Fahrenberg, J., Myrtek, M. (eds.) Progress in Ambulatory Assessment - Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies, pp. 435–454. Hogrefe & Huber Publishers, Göttingen (2001)Google Scholar
  15. 15.
    Wilhelm, F.H., Pfaltz, M.C., Grossman, P., Roth, W.T.: Distinguishing Emotional From Physical Activation. In: Ambulatory Psychophysiological Monitoring, Rocky Mountain Bioengineering Symposium & International ISA Biomedical Sciences Instrumentation Symposium (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Holger Steiner
    • 1
  • Dietmar Reinert
    • 1
  • Norbert Jung
    • 2
  1. 1.BGIA - Institute for Occupational Health and Safety of the German Social Accident InsuranceSankt AugustinGermany
  2. 2.University of Applied Sciences Bonn-Rhein-SiegSankt AugustinGermany

Personalised recommendations