Advertisement

Neurocognitive Workload Assessment Using the Virtual Reality Cognitive Performance Assessment Test

  • Thomas D. Parsons
  • Louise Cosand
  • Christopher Courtney
  • Arvind Iyer
  • Albert A. Rizzo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5639)

Abstract

The traditional approach to assessing neurocognitive performance makes use of paper and pencil neuropsychological assessments. This received approach has been criticized as limited in the area of ecological validity. While virtual reality environments provide increased ecological validity, they are often done without taking seriously the demands of rigorous research design and control for potentially confounding variables. The newly developed Virtual Reality Cognitive Performance Assessment Test (VRCPAT) focuses upon enhanced ecological validity using virtual environment scenarios to assess neurocognitive processing. After an assessment for potential confounds (i.e. appropriate level of immersion and performance on neuropsychological measures), the VRCPAT battery’s Attention Module (i.e. Humvee scenario) was administered to a sample of healthy adults. Findings suggest that increase in stimulus complexity and stimulus intensity can manipulate attention performance within the Attention Module.

Keywords

Neuropsychological assessment neurocognitive ecological validity virtual environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., Kellam, S.G.: Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review 2, 109–145 (1991)CrossRefGoogle Scholar
  2. 2.
    Posner, M.I., Petersen, S.E.: The attention system of the human brain. Annual Review of Neuroscience 13, 25–42 (1990)CrossRefGoogle Scholar
  3. 3.
    Knudsen, E.I.: Fundamental components of attention. Annual Review of Neuroscience 30, 57–78 (2007)CrossRefGoogle Scholar
  4. 4.
    Posner, M.I., Raichle, M.E.: Networks of attention. In: Posner, M.I., Raichle, M.E. (eds.) Images of mind, pp. 153–179. Scientific American, New York (1994)Google Scholar
  5. 5.
    Fisk, A.D., Schneider, W.: Control and automatic processing during tasks requiring sustained attention: a new approach to vigilance. Hum Factors 23, 737–750 (1981)Google Scholar
  6. 6.
    Schneider, W., Shiffrin, R.M.: Controlled and automatic human information-processing. 1. Detection, search, and attention. Psychol. Rev. 84, 1–66 (1977)Google Scholar
  7. 7.
    Posner, M.I.: Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980)CrossRefGoogle Scholar
  8. 8.
    Gordon, M., Barkley, R.A., Lovett, B.J.: Tests and observational measures. In: Barkley, R.A. (ed.) Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment, 3rd edn., pp. 369–388. Guilford, New York (2006)Google Scholar
  9. 9.
    Foa, E.B., Kozak, M.J.: Emotional processing of fear: exposure to corrective information. Psychological Bulletin 99, 20–35 (1986)CrossRefGoogle Scholar
  10. 10.
    Parsons, T.D., Rizzo, A.A.: Affective Outcomes of Virtual Reality Exposure Therapy for Anxiety and Specific Phobias: A Meta-Analysis. Journal of Behavior Therapy and Experimental Psychiatry 39, 250–261 (2008)CrossRefGoogle Scholar
  11. 11.
    Parsons, T.D., Bowerly, T., Buckwalter, J.G., Rizzo, A.A.: A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychology 13, 363–381 (2007)CrossRefGoogle Scholar
  12. 12.
    Parsons, T.D., Rizzo, A.A.: Neuropsychological Assessment of Attentional Processing using Virtual Reality. Annual Review of CyberTherapy and Telemedicine 6, 23–28 (2008)Google Scholar
  13. 13.
    Parsons, T.D., Rizzo, A.A., Bamattre, J., Brennan, J.: Virtual Reality Cognitive Performance Assessment Test. Annual Review of CyberTherapy and Telemedicine 5, 163–171 (2007)Google Scholar
  14. 14.
    Parsons, T.D., Rizzo, A.A.: Initial Validation of a Virtual Environment for Assessment of Memory Functioning: Virtual Reality Cognitive Performance Assessment Test. Cyberpsychology and Behavior 11, 17–25 (2008)CrossRefGoogle Scholar
  15. 15.
    Parsons, T.D., Silva, T.M., Pair, J., Rizzo, A.A.: A Virtual Environment for Assessment of Neurocognitive Functioning: Virtual Reality Cognitive Performance Assessment Test. Studies in Health Technology and Informatics 132, 351–356 (2008)Google Scholar
  16. 16.
    Parsons, T.D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J.G., Rizzo, A.A.: Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia 42, 555–562 (2004)CrossRefGoogle Scholar
  17. 17.
    Parsons, T.D., Rizzo, A.A., Buckwalter, J.G.: Backpropagation and regression: comparative utility for neuropsychologists. Journal of Clinical and Experimental Neuropsychology 26, 95–104 (2004)CrossRefGoogle Scholar
  18. 18.
    Parsons, T.D., Rizzo, A.A., van der Zaag, C., McGee, J.S., Buckwalter, J.G.: Gender and cognitive performance: a test of the common cause hypothesis. Aging, Neuropsychology, and Cognition 12, 78–88 (2005)CrossRefGoogle Scholar
  19. 19.
    Schwartz, J.M.: Neuroanatomical aspects of cognitive-behavioural therapy response in obsessivecompulsive disorder. An evolving perspective on brain and behaviour. British Journal of Psychiatry Supplemental, 38–44 (1998)Google Scholar
  20. 20.
    De Raedt, R.: Does neuroscience hold promise for the further development of behavior therapy? The case of emotional change after exposure in anxiety and depression. Scandinavian Journal of Psychology 47, 225–236 (2006)CrossRefGoogle Scholar
  21. 21.
    Mineka, S., Watson, D., Clark, L.A.: Comorbidity of anxiety and unipolar mood disorders. Annual Review of Psychology 49, 377–412 (1998)CrossRefGoogle Scholar
  22. 22.
    Hariri, A.R., Bookheimer, S.Y., Mazziotta, J.C.: Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 11, 43–48 (2000)CrossRefGoogle Scholar
  23. 23.
    Macedonio, M., Parsons, T.D., Rizzo, A.A.: Immersiveness and Physiological Arousal within Panoramic Video-based Virtual Reality. Cyberpsychology and Behavior 10, 508–516 (2007)CrossRefGoogle Scholar
  24. 24.
    Meehan, M., Insko, B., Whitton, M., Brooks, F.: Physiological measures of presence in virtual environments. In: Proceedings of 4th Annual Presence Workshop, Philadelphia (May 2002)Google Scholar
  25. 25.
    Pugnetti, L., Meehan, M., Mendozzi, L.: Psychophysiological correlates of virtual reality: a review. Presence 10, 384–400 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas D. Parsons
    • 1
  • Louise Cosand
    • 1
  • Christopher Courtney
    • 1
  • Arvind Iyer
    • 1
  • Albert A. Rizzo
    • 1
  1. 1.University of Southern California’s Institute for Creative TechnologiesMarina del ReyUSA

Personalised recommendations