Analyzing Control-Display Movement Compatibility: A Neuroimaging Study

  • S. M. Hadi Hosseini
  • Maryam Rostami
  • Makoto Takahashi
  • Naoki Miura
  • Motoaki Sugiura
  • Ryuta Kawashima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5639)

Abstract

Despite the huge number of studies on control-display compatibility conducted over the past fifty years, there are still debates concerning the efficacy of conventional measures such as subjective evaluation and performance measures for discriminating between compatible and incompatible control-display mappings. Since compatibility refers to the control-display relationship corresponding to mental model of the users, we tried to apply functional neuroimaging technique as a direct objective measure for analyzing cognitive factors involved in human-machine interaction (HMI). Functional Magnetic Resonance Imaging (fMRI) was applied in order to analyze rotary control-linear display movement compatibility for horizontal and vertical linear displays. Although the results of behavioral measures were not significantly different for incompatible and compatible control-display mappings, neuroimaging results were quite successful in discriminating between them. Moreover, the fMRI results showed significantly greater brain activity for the incompatible condition than for the compatible one in the left posterior cingulate and the right inferior temporal gyrus that reveals the involvement of a greater cognitive load in terms of attention and visuomotor transformation in the incompatible condition. The results of this study suggest that neuroimaging method is a good complement to conventional measures and is quite helpful to acquire a better understanding of the cognitive processes involved in HMI.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N.: Positron Emission Tomography: Basic Sciences. Springer, New Jersey (2005)CrossRefGoogle Scholar
  2. 2.
    Bussey, T.J., Muir, J.L., Everitt, B.J., Robbins, T.W.: Triple Dissociation of Anterior Cingulate, Posterior Cingulate, and Medial Frontal Cortices on Visual Discrimination Tasks using a Touchscreen Testing Procedure for the Rat. Behavioral Neuroscience 111(5), 920–936 (1997)CrossRefGoogle Scholar
  3. 3.
    Cabeza, R., Kingstone, A.: Handbook of Functional Neuroimaging of Cognition. The MIT Press, Massachusetts (2001)Google Scholar
  4. 4.
    Caleb, M., Adler, C.M., Sax, K.W., Holland, S.K., Schmithorst, V., Rosenberg, L., Strakowski, S.M.: Changes in Neuronal Activation with Increasing Attention Demand in Healthy Volunteers: An fMRI Study. Synapse 42(4), 266–272 (2001)CrossRefGoogle Scholar
  5. 5.
    Chan, W.H., Chan, A.H.: Movement Compatibility for Rotary Control and Circular Display: Computer Simulated Test and Real Hardware Test. Applied Ergonomics 34(1), 61–71 (2003)CrossRefGoogle Scholar
  6. 6.
    Collins, D.L., Zijdenbos, A., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Transactions on Medical Imaging 17, 463–468 (1998)CrossRefGoogle Scholar
  7. 7.
    Fafrowicz, M., Marek, T.: Quo Vadis, Neuroergonomics. Ergonomics 50(11), 1941–1949 (2007)CrossRefGoogle Scholar
  8. 8.
    Fitts, P.M., Seeger, C.M.: S-R Compatibility: Spatial Characteristics of Stimulus and Response Codes. Journal of Experimental Psychology 46, 199–210 (1953)CrossRefGoogle Scholar
  9. 9.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: a General Linear Approach. Human Brain Mapping 2, 189–210 (1995)CrossRefGoogle Scholar
  10. 10.
    Gazzaniga, M.S., Ivry, R.B., Mangun, G.R.: Cognitive Neuroscience: The Biology of Mind. W.W. Norton, NY (2002)Google Scholar
  11. 11.
    Hancock, P.A., Szalma, J.L.: The Future of Neuroergonomics. Theoretical Issues in Ergonomics Science 4, 238–249 (2003)CrossRefGoogle Scholar
  12. 12.
    Hoffmann, E.R.: Strength of Component Principles Determining Direction of Turn Stereotypes: Linear Displays with Rotary Controls. Ergonomics 40(2), 199–222 (1997)CrossRefGoogle Scholar
  13. 13.
    Huang, C., Wahlund, L., Svensson, L., Winbald, B., Julin, P.: Cingulate Cortex Hypoperfusion Predicts Alzheimer‘s Disease in Mid Cognitive Impairment. BMC Neurology 2, 9 (2002)CrossRefGoogle Scholar
  14. 14.
    Huettel, S.A., Song, A.W., McCarthy, G.: Functional Magnetic Resonance Imaging. Sinauer Associate Inc., Massachusetts (2004)Google Scholar
  15. 15.
    Karwowski, W., Siemionow, W., Gielo-Perczak, K.: Physical Neuroergonomics: The Human Brain in Control of Physical Work Activities. Theoretical Issues in Ergonomics Science 4, 175–199 (2003)CrossRefGoogle Scholar
  16. 16.
    Liu, X., Banich, M.T., Jacobson, B.L., Tanabe, J.L.: Common and Distinct Neural Substrates of Attentional Control in an Integrated Simon and Spatial Stroop Task Assessed by Event-Related fMRI. NeuroImage 22, 1097–1106 (2004)CrossRefGoogle Scholar
  17. 17.
    Maguire, E.A.: The Retrosplenial Contribution to Human Navigation: a Review of Lesion and Neuroimaging Findings. Scandinavian Journal of Psychology 42, 225–238 (2001)CrossRefGoogle Scholar
  18. 18.
    Mazoyer, P., Wicker, B., Fonlupt, P.: A Neural Network Elicited by Parametric Manipulation of the Attention Load. Neuroreport 13(17), 2331–2334 (2002)CrossRefGoogle Scholar
  19. 19.
    Moffat, S.D., Elkins, W., Resnick, S.M.: Age Differences in the Neural Systems Supporting Human Allocentric Spatial Navigation. Neurobiology of Aging 27(7), 965–972 (2006)CrossRefGoogle Scholar
  20. 20.
    Niedermeyer, E., Lopes da Silva, F.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams and Wilkins, Philadelphia (2005)Google Scholar
  21. 21.
    Nielsen, F.A., Balslev, D., Hansen, L.K.: Mining Posterior Cingulate. NeuroImage 27(3), 520–532 (2004)CrossRefGoogle Scholar
  22. 22.
    Nieto-Castanon, A., Ghosh, S.S., Tourville, J.A., Guenther, F.H.: Region of Interest Based Analysis of Functional Imaging Data. NeuroImage 19(4), 1303–1316 (2003)CrossRefGoogle Scholar
  23. 23.
    Oldfield, R.: The Assessment and Analysis of Handedness: the Edinburgh Inventory. Neuropsychologia 9, 812–815 (1971)CrossRefGoogle Scholar
  24. 24.
    Parasuraman, R., Rizzo, M.: Neuroergonomics: The Brain at Work. Oxford University Press, NY (2006)CrossRefGoogle Scholar
  25. 25.
    Payne, S.J.: Naive Judgments of Stimulus-Response Compatibility. Human Factors 37, 495–506 (1995)CrossRefGoogle Scholar
  26. 26.
    Proctor, R.W., Vu, K.P.L.: Stimulus-Response Compatibility Principles: Data, Theory, and Application. CRC Press, UK (2006)Google Scholar
  27. 27.
    Sanderson, P., Pipingas, A., Danieli, F., Silberstein, R.: Process Monitoring and Configural Display Design: a Neuroimaging Study. Theoretical Issues in Ergonomics Science 4, 151–174 (2003)CrossRefGoogle Scholar
  28. 28.
    Sarter, N., Sarter, M.: Neuroergonomics and Challenges of Merging Neuroscience with Cognitive Ergonomics. Theoretical Issues in Ergonomics Science 4, 142–150 (2003)CrossRefGoogle Scholar
  29. 29.
    Tlauka, M.: Display-Control Compatibility: The Relationship between Performance and Judgements of Performance. Ergonomics 47(3), 281–295 (2004)CrossRefGoogle Scholar
  30. 30.
    Vogt, B.A., Vogt, L., Laureys, S.: Cytology and Functionally Correlated Circuits of Human Posterior Cingulate Areas. NeuroImage 29, 452–466 (2006)CrossRefGoogle Scholar
  31. 31.
    Vu, K.P., Proctor, R.W.: Determinants of Right-Left and Top-Bottom Prevalence for Two-Dimensional Spatial Compatibility. Journal of Experimental Psychology: Human Perception & Performance 27(4), 813–828 (2001)Google Scholar
  32. 32.
    Vu, K.L., Proctor, R.W.: Naive Judgments of Stimulus-Response Compatibility; Implications for Interface Design. Ergonomics 46, 169–187 (2003)CrossRefGoogle Scholar
  33. 33.
    Vu, K.L., Proctor, R.W.: Stimulus-Response Compatibility. In: Proctor, R.W., Reeve, T.G. (eds.) Stimulus-Response Compatibility; An Integrated Perspective, pp. 89–116. North Holland, Amsterdam (2001)Google Scholar
  34. 34.
    Warrick, M.J.: Direction of Movement in the Use of Control Knobs to Position Visual Indicators. USAF AMC Rep. No. 694-4C (1947)Google Scholar
  35. 35.
    Yu, R.F., Chan, A.H.: Comparative Research on Response Stereotypes for Daily Operation Tasks of Chinese and American Engineering Students. Perceptual & Motor Skills 98(1), 179–191 (2004)CrossRefGoogle Scholar
  36. 36.
    Wu, S.P.: Further Studies on the Spatial Compatibility of Four Control-Display Linkages. International Journal of Industrial Ergonomics 19, 353–360 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. M. Hadi Hosseini
    • 1
  • Maryam Rostami
    • 1
  • Makoto Takahashi
    • 1
  • Naoki Miura
    • 2
    • 3
  • Motoaki Sugiura
    • 2
  • Ryuta Kawashima
    • 2
  1. 1.Department of Management Science & Technology, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Departement of Functional Brain Imaging, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
  3. 3.Department of Intelligence Mechanical Systems EngineeringKochi University of TechnologyJapan

Personalised recommendations