Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

We describe the constraint satisfaction problem and show that it unifies a very wide variety of computational problems. We discuss the techniques that have been used to analyse the complexity of different forms of constraint satisfaction problem, focusing on the algebraic approach, and highlight some of the recent results in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  2. Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 196–228. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bodirsky, M., Grohe, M.: Non-dichotomies in constraint satisfaction complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation 16, 359–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodirsky, M., Nordh, G., von Oertzen, T.: Integer programming with 2-variable equations and 1-variable inequalities. Inf. Proc. Letters 109, 572–575 (2009)

    Article  Google Scholar 

  6. Bodnarchuk, V., Kaluzhnin, L., Kotov, V., Romov, B.: Galois theory for Post algebras. I. Cybernetics and Systems Analysis 5, 243–252 (1969)

    Google Scholar 

  7. Bulatov, A.: H-coloring dichotomy revisited. Theoretical Computer Science 349(1), 31–39 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bulatov, A., Valeriote, M.: Recent results on the algebraic approach to the CSP. In: Creignou, N., et al. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 68–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)

    Article  MathSciNet  Google Scholar 

  11. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. Journal of Computer and System Sciences 74, 721–743 (2007)

    Article  MathSciNet  Google Scholar 

  12. Cooper, M., Jeavons, P., Salamon, A.: Hybrid tractable CSPs which generalize tree structure. In: ECAI 2008, Proceedings of the 18th European Conference on Artificial Intelligence, Patras, Greece, July 21–25, 2008, pp. 530–534. IOS Press, Amsterdam (2008)

    Google Scholar 

  13. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  14. Dalmau, V., Kolaitis, P., Vardi, M.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–366 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Freuder, E.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32, 755–761 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  19. Geiger, D.: Closed systems of functions and predicates. Pacific Journal of Mathematics 27, 95–100 (1968)

    MATH  MathSciNet  Google Scholar 

  20. Green, M., Jefferson, C.: Structural tractability of propagated constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 372–386. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Grohe, M.: The structure of tractable constraint satisfaction problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 58–72. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54, 1–24 (2007)

    Article  MathSciNet  Google Scholar 

  23. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA 2006: Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithm, pp. 289–298. ACM Press, New York (2006)

    Chapter  Google Scholar 

  24. Gyssens, M., Jeavons, P., Cohen, D.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical Computer Science 200, 185–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jeavons, P., Cohen, D.: An algebraic characterization of tractable constraints. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 633–642. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  27. Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

    Google Scholar 

  28. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial Intelligence 79(2), 327–339 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jefferson, C., Jeavons, P., Green, M., van Dongen, M.: Representing and solving finite-domain constraint problems using systems of polynomials. Technical Report RR-07-08, Oxford University Computing Laboratory (2007)

    Google Scholar 

  31. Jonsson, P., Krokhin, A.: Recognizing frozen variables in constraint satisfaction problems. Theoretical Computer Science 329(1-3), 93–113 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. International Journal of Algebra and Computation 16, 563–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lenstra, H.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Matijasevič, J., Robinson, J.: Reduction of an arbitrary Diophantine equation to one in 13 unknowns. Acta Arithmeticae 27, 521–553 (1975)

    MATH  Google Scholar 

  35. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Information Sciences 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  36. Pearson, J., Jeavons, P.: A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Holloway, University of London (July 1997)

    Google Scholar 

  37. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  38. Salamon, A., Jeavons, P.: Perfect constraints are tractable. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings 10th ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

    Google Scholar 

  40. Simonis, H.: Sudoku as a constraint problem. In: CP Workshop on Modeling and Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeavons, P. (2009). Presenting Constraints. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics