Chemometric Methods for Biomedical Raman Spectroscopy and Imaging

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The vibrational spectrum is a quantitative measure of a sample’s molecular composition. Hence, classical chemometric methods, especially regression-based, have focused on exact mapping between identity and sample composition. While this approach works well for molecular identifications and scientific investigations, problems of biomedical interest often involve complex mixtures of stochastically varying compositions and complex spatial distributions of molecules contributing to the recorded signals. Hence, the challenge often is not to predict the identity of materials but to determine chemical markers that help rapidly detect species (e.g. impurities, conformations, strains of bacteria) in large areas or indicate changes in function in complex tissue (e.g. cancer or tissue engineering). Hence, the rate of data analysis has to be rapid, has to be robust with respect to stochastic variance and the provided information is usually related to biomedical context and not to molecular compositions. The emergence of imaging techniques and clinical applications are spurring growth in this area. In this chapter, we discuss chemometric methods that are useful in this milieu. We first review methods for data pre-processing with a focus on the key challenges facing a spectroscopist. Next, we survey some of the well known, widely used pattern classification techniques under the framework of supervised and unsupervised classification. We discuss the applicability, advantages and drawbacks of each of these techniques and help the reader not only gain useful insights into the techniques themselves but also acquire an understating of the underlying ideas and principles. We conclude by providing examples of the coupled use of chemometric and statistical tools to develop robust classification protocols for prostate and breast tissue pathology. We specifically focus on the critical factors and pitfalls at each step in converting spectral data sets into hi-fidelity images useful for decision making.


Support Vector Machine Feature Selection Raman Spectroscopy Linear Discriminant Analysis Discriminant Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Pelletier, Appl. Spectrosc. 57(1), 20A–42A (2003)ADSGoogle Scholar
  2. 2.
    R. Kramer, Chemometric Techniques for Quantitative Analysis (Marcel Dekker, New York, 1998)Google Scholar
  3. 3.
    D.M. Haaland, E.V. Thomas, Anal. Chem. 60(11), 1193–1202 (1988) and 1202–1208 (1998)Google Scholar
  4. 4.
    A. De Juan, R. Tauler, Anal. Chim. Acta 500(1–2), 195–210 (2003)Google Scholar
  5. 5.
    J.J. Andrew, T.M. Hancewicz, Appl. Spectrosc. 52 (6), 797–807 (1998)ADSGoogle Scholar
  6. 6.
    P. Geladi, Spectrochim. Acta B 58(5), 767 –782 (2003)Google Scholar
  7. 7.
    B.R. Kowalski, Chemometrics: Theory and Applications (ACS, Washington DC, 1977)Google Scholar
  8. 8.
    M.A. Sharaf, D.L. Illman, B.R. Kowalski, Chemometrics (Wiley, New York, 1986)Google Scholar
  9. 9.
    R. Kramer, Chemometric Techniques for Quantitative Analysis (Marcel Dekker, New York, 1998)Google Scholar
  10. 10.
    R.G. Brereton, Applied Chemometrics for Scientists ( Wiley , New York, 2007)Google Scholar
  11. 11.
    S.J. Haswell, Practical Guide to Chemometrics (Marcel Dekker, New York, 1992)Google Scholar
  12. 12.
    P. Gemperline, Taylor, Francis, Practical Guide to Chemometrics, 2nd edn. (CRC Press, Boca Raton, 2006)Google Scholar
  13. 13.
    B. Lavine, J. Workman, Anal. Chem. 80(12), 4519–4531 (2008)Google Scholar
  14. 14.
    N.K. Afseth, V.H. Segtnan, J.P. Wold, Appl. Spectrosc. 60 (12), 1358–1367 (2006)ADSGoogle Scholar
  15. 15.
    P. Heraud, B.R. Wood, J. Beardall, D. McNaughton, J. Chemometr. 20(5), 193–197 (2006)Google Scholar
  16. 16.
    A. Jirasek, G. Schulze, M.M.L. Yu, M.W. Blades, R.F.B. Turner, Appl. Spectrosc. 58(12), 1488–1499 (2004)ADSGoogle Scholar
  17. 17.
    M.N. Leger, A.G. Ryder, Appl. Spectrosc. 60(2), 182–193 (2006)ADSGoogle Scholar
  18. 18.
    C.A. Lieber, A. Mahadevan-Jansen, Appl. Spectrosc. 57(11), 1363–1367 (2003)ADSGoogle Scholar
  19. 19.
    A. O’Grady, A.C. Dennis, D. Denvir, J.J. McGarvey, S.E.J. Bell, Anal. Chem. 73(9), 2058–2065 (2001)Google Scholar
  20. 20.
    M. Fujiwara, H. Hamaguchi, M. Tasumi, Appl. Spectrosc. 40(2), 137–139 (1986)ADSGoogle Scholar
  21. 21.
    T. Hirschfeld, B. Chase, Appl. Spectrosc. 40(2), 133–137 (1986)ADSGoogle Scholar
  22. 22.
    D.B. Chase, J. Am. Chem. Soc. 108(24), 7485–7488 (1986)Google Scholar
  23. 23.
    D.N. Waters, Appl. Spectrosc. 41(4), 539–709 (1987)MathSciNetGoogle Scholar
  24. 24.
    S. Fendel, R. Freis, B. Schrader, J. Mol. Struct. 410–411, 531–534 (1997)Google Scholar
  25. 25.
    P.P. Yaney, J. Opt. Soc. Am. 62(11), 1297–1303 (1972)ADSGoogle Scholar
  26. 26.
    S.-Y. Lee, D. Zhang, D.W. McCamant, P. Kukura, R.A. Mathies, J. Chem. Phys. 121(8), 3632–3642 (2004)ADSGoogle Scholar
  27. 27.
    D.W. McCamant, P. Kukura, R.A. Mathies, Appl. Spectrosc. 57(11), 1317–1323 (2003)ADSGoogle Scholar
  28. 28.
    A.P. Shreve, N.J. Cherepy, R.A. Mathies, Appl. Spectrosc. 46, 707–711 (1992)ADSGoogle Scholar
  29. 29.
    P. Matousek, M. Towrie, A.W. Parker, J. Raman Spectrosc. 33(4), 238–242 (2002)ADSGoogle Scholar
  30. 30.
    S.H. Mosier-Boss, S.H. Lieberman, R. Newbery, Appl. Spectrosc. 49, 630–638 (1995)ADSGoogle Scholar
  31. 31.
    W. Hill, D. Rogalla, Anal. Chem. 64(21), 2575–2579 (1992)Google Scholar
  32. 32.
    R. Bhargava, I.W. Levin, Anal. Chem. 74, 1429–1435 (2002)Google Scholar
  33. 33.
    C.J. Behrend, C.P. Tarnowski, M.D. Morris, Appl. Spectrosc. 56(11), 1458–1461 (2002)ADSGoogle Scholar
  34. 34.
    H.Takeuchi, S. Hashimoto, I. Harada, Appl. Spectrosc. 47, 129 (1993)ADSGoogle Scholar
  35. 35.
    D. Zhang, K.N. Jallad, D. Ben-Amotz, Appl. Spectrosc. 55(11), 1523–1531 (2001) and D. Zhang, D. Ben-Amotz, Appl. Spectrosc. 56(1), 91–98 (2002)Google Scholar
  36. 36.
    Y. Katsumoto, Y. Ozaki, Appl. Spectrosc. 57(3), 317–322 (2003)ADSGoogle Scholar
  37. 37.
    H.G. Schulze, L.S. Greek, C.J. Barbosa, M.W. Blades, R.F.B. Turner, Appl. Spectrosc. 52(4), 621–625 (1998)ADSGoogle Scholar
  38. 38.
    C. Craggs, K.P. Galloway, D.J. Gardiner, Appl. Spectrosc. 50(1), 43–47 (1996)ADSGoogle Scholar
  39. 39.
    M. Lang, H. Guo, J.E. Odegard, C.S. Burrus, R.O. Wells Jr., IEEE Signal Process. Lett. 3(1), 10–12 (1996)ADSGoogle Scholar
  40. 40.
    S. Šaši, D.A. Clark, J.C. Mitchell, M.J. Snowden, Analyst 129(11), 1001–1007 (2004)ADSGoogle Scholar
  41. 41.
    A.A. Green, M. Berman, P. Switzer, M. Craig, IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988)ADSGoogle Scholar
  42. 42.
    J. B. Lee, A. S. Woodyatt, M. Berman, IEEE Trans. Geosci. Remote Sens. 28, 295–304 (1990)ADSGoogle Scholar
  43. 43.
    R. Bhargava, S. Wang, J.L. Koenig, Appl. Spectrosc. 54, 486–495 (2000)ADSGoogle Scholar
  44. 44.
    M.J. Wabomba, Y. Sulub, G.W. Small, Appl. Spectrosc. 61, 349–358 (2007)ADSGoogle Scholar
  45. 45.
    R. Bhargava, S. Wang, J.L. Koenig, Appl. Spectrosc. 54, 1690–1706 (2000)ADSGoogle Scholar
  46. 46.
    J.Boardman, F. Kruse, Proc. ERIM Tenth Thematic Conf. Geological Remote Sensing (1994), pp. 407–418Google Scholar
  47. 47.
    H.G. Schulze, M.M.L. Yu, C.J. Addison, M.W. Blades, R.F.B. Turner, Appl. Spectrosc. 60(7), 820 (2006)ADSGoogle Scholar
  48. 48.
    L. Duponchela, P. Milanfarb, C. Ruckebuscha, J.P. Huvennea, Anal. Chim. Acta 607(2), 168–175 (2008)Google Scholar
  49. 49.
    C.A. Hayden, M.D. Morris, Appl. Spectrosc. 50(6), 708–714 (1996)ADSGoogle Scholar
  50. 50.
    G.H. Dunteman, Principal Components Analysis (Quantitative Applications in the Social Sciences)(SAGE publications, Newbury park, 1989)Google Scholar
  51. 51.
    M.A. Kramer, AIChE J. 37(2), 233–243 (1991)Google Scholar
  52. 52.
    P.J. De Groot, G.J. Postma, W.J. Melssen, L.M.C. Buydens, V. Deckert, R. Zenobi, Anal. Chim. Acta 446(1–2), 71–83 (2001)Google Scholar
  53. 53.
    I.H. McColl, E.W. Blanch, A.C. Gill, A.G.O. Rhie, M.A. Ritchie, L. Hecht, K. Nielsen, L.D. Barron, J. Am. Chem. Soc. 125(33), 10019–10026 (2003)Google Scholar
  54. 54.
    G. Deinum, D. Rodriguez, T.J. Römer, M. Fitzmaurice, J.R. Kramer, M.S. Feld, Appl. Spectrosc. 53(8), 938–942 (1999)ADSGoogle Scholar
  55. 55.
    M. Shimoyama, H. Maeda, K. Matsukawa, H. Inoue, T. Ninomiya, Y. Ozaki, Vib. Spectrosc. 14(2), 253–259 (1997)Google Scholar
  56. 56.
    I.P. Keen, G.W. White, P.M. Fredericks, J. Forensic Sci. 43(1), 82–89 (1998)Google Scholar
  57. 57.
    A.G. Ryder, J. Forensic Sci. 47(2), 275–284 (2002)Google Scholar
  58. 58.
    C. Krafft, T. Knetschke, A. Siegner, R.H.W. Funk, R. Salzer, Vib. Spectrosc. 32(1 SPEC.), 75–83 (2003)Google Scholar
  59. 59.
    J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, T. Huser, Biophys. J. 90(2), 648–656 (2006)ADSGoogle Scholar
  60. 60.
    C.M. Krishna, G. Kegelaer, I. Adt, S. Rubin, V.B. Kartha, M. Manfait, G.D. Sockalingum, Biopolymers 82(5), 462–470 (2006)Google Scholar
  61. 61.
    I. Notingher, I. Bisson, A.E. Bishop, W.L. Randle, J.M.P. Polak, L.L. Hench, Anal. Chem. 76(11), 3185–3193 (2004)Google Scholar
  62. 62.
    W.F. Pearman, A.W. Fountain III, Appl. Spectrosc. 60(4), 356–365 (2006)ADSGoogle Scholar
  63. 63.
    M. Veij, P. Vandenabeele, K.A. Hall, F.M. Fernandez, M.D. Green, N.J. White, A.M. Dondorp, P.N. Newton, L. Moens, J. Raman Spectrosc. 38(2), 181 – 187 (2007)ADSGoogle Scholar
  64. 64.
    A. Mahadevan-Jansen, M.F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, R. Richards-Kortum, Photochem. Photobiol. 68(1), 123–132 (1998)Google Scholar
  65. 65.
    R.M. Jarvis, A. Brooker, R. Goodacre, Faraday Discuss. 132, 281–292 (2006)ADSGoogle Scholar
  66. 66.
    F. Estienne, D.L. Massart, Anal Chim. Acta 450(1–2), 123–129 (2001)Google Scholar
  67. 67.
    S. Wold, A. Ruhe, H. Wold, W.J. Dunn, SIAM J. Sci. Comput. 5(3), 735–743 (1984)MATHGoogle Scholar
  68. 68.
    P. Geladi, B.R. Kowalski, Anal. Chim. Acta, 185(C), 1–17 (1986)Google Scholar
  69. 69.
    S. De Jong, Chemom. Intell. Lab. Syst. 18(3), 251–253 (1993)Google Scholar
  70. 70.
    U. Kruger, Y. Zhou, X. Wang, D. Rooney, J. Thompson, J. Chemometr. 22(1), 1–13 (2008)Google Scholar
  71. 71.
    There are several instances of, for example, newer algorithms (S.J. Qin, Comput. Chem. Eng. 22(4–5), 503–514 (1998)) and comparisons of robustness (G.R. Phillips, E.M. Eyring, Anal. Chem. 55(7), 1134–1138 (1983), I.S. Helland, Scand. J. Stat. 17(2), 97–114 (1990)) among others.Google Scholar
  72. 72.
    P. Geladi, J. Chemometr. 2(4), 231–246 (1988)Google Scholar
  73. 73.
    W.-C. Shih, K.L. Bechtel, M.S. Feld, Anal. Chem. 79(1), 234–239 (2007)Google Scholar
  74. 74.
    K. Kachrimanis, D.E. Braun, U.J. Griesser, J. Pharm. Biomed. Anal. 43(2), 407–412 (2007)Google Scholar
  75. 75.
    L. Zhang, M.J. Henson, S.S. Sekulic, Anal. Chim. Acta 545(2), 262–278 (2005)Google Scholar
  76. 76.
    J.R. Beattie, S.E.J. Bell, C. Borggaard, A.M. Fearon, B.W. Moss, Lipids 42(7), 679–685 (2007)Google Scholar
  77. 77.
    B.K. Alsberg, A.M. Woodward, D.B. Kell, An introduction to wavelet transforms for chemometricians: A time- frequency approach. Chemometr. Intell. Lab. Syst. 37(2), 215–239 (1997). doi: 10.1016/S0169-7439(97)00029-4Google Scholar
  78. 78.
    U. Depczynski, K. Jetter, K. Molt, A. Niemöller, Chemometr. Intell. Lab. Syst. 39(1), 19–27 (1997)Google Scholar
  79. 79.
    U. Depczynski, K. Jetter, K. Molt, A. Niemöller, Chemometr. Intell. Lab. Syst. 49(2), 151–161 (1999)Google Scholar
  80. 80.
    F. Ehrentreich, L. Summchen, Anal. Chem. 73(17), 4364–4373 (2001)Google Scholar
  81. 81.
    Y.-P. Wang, Y. Wang, P. Spencer, Appl. Spectrosc. 60(7), 826–832 (2006)ADSGoogle Scholar
  82. 82.
    B. Walczak, D.L. Massart, Chemometr. Intell. Lab. Syst. 36(2), 81–94 (1997)Google Scholar
  83. 83.
    A.K.-M. Leung, F.-T. Chau, J.-B. Gao, A review on applications of wavelet transform techniques in chemical analysis: 1989–1997. Chemometr. Intell. Lab. Syst. 43(1–2), 165–184 (1998). doi: 10.1016/S0169-7439(98)00080-XGoogle Scholar
  84. 84.
    B.R. Bakshi, J. Chemometr. 13(3–4), 415–434 (1999)Google Scholar
  85. 85.
    S.C. Yusta, Different metaheuristic strategies to solve the feature selection problem. Pattern Recognit. Lett (2009) \AQ[00]{Please provide volume number and page range for Ref. [85].}Google Scholar
  86. 86.
    A. Perera, T. Yamanaka, A. Gutieérrez-Gaélvez, B. Raman, R. Gutieérrez-Osuna, Sens. Actuators, B 116(1–2), 17–22 (2006)Google Scholar
  87. 87.
    G. Srinivasan, R. Bhargava, Spectroscopy 22, 40–51 (2007)Google Scholar
  88. 88.
    A.R. Webb, in Statistical Pattern Recognition ( Wiley , Chichester, 2002)MATHGoogle Scholar
  89. 89.
    J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd edn. (Springer-Verlag, New York, 1985)MATHGoogle Scholar
  90. 90.
    R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification.2nd edn. (Wiley, New York, 2001), p. 282–347Google Scholar
  91. 91.
    R. Goodacre, E.M. Timmins, R. Burton, N. Kaderbhai, A.M. Woodward, D.B. Kell, P.J. Rooney, Microbiology 144(5), 1157–1170 (1998)Google Scholar
  92. 92.
    K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N.A. Ngo-Thi, T. Van Vreeswijk, M. Stämmler, H.P. Endtz, H.A. Bruining, D. Naumann, G.J. Puppels, J. Clin. Microbiol. 41(1), 324–329 (2003)Google Scholar
  93. 93.
    S. Sigurdsson, P.A. Philipsen, L.K. Hansen, J. Larsen, M. Gniadecka, H. Christian Wulf, IEEE Trans. Biomed. Eng. 51(10), 1784–1793 (2004)Google Scholar
  94. 94.
    M. Gniadecka, P.A. Philipsen, S. Sigurdsson, et al., J. Invest. Dermatol. 122(2), 443–449 (2004)Google Scholar
  95. 95.
    A.R. De Paula Jr., S. Sathaiah, Med. Eng. Phys. 27(3), 237–244 (2005)Google Scholar
  96. 96.
    M.S. Borchert, M.C. Storrie-Lombardi, J.L. Lambert, Diabetes Technol. Ther. 1(2), 145–151 (1999)Google Scholar
  97. 97.
    I.R. Lewis, N.W. Daniel Jr., N.C. Chaffin, P.R. Griffiths, Spectrochim. Acta A 50(11), 1943–1958 (1994)ADSGoogle Scholar
  98. 98.
    K. Judge, C.W. Brown, L. Hamel, Appl. Spectrosc. 62(11), 1221–1225 (2008)ADSGoogle Scholar
  99. 99.
    M. Defernez, E.K. Kemsley, Analyst 124(11), 1675–1681 (1999)Google Scholar
  100. 100.
    B. Widrow, M.A. Lehr. Proc. IEEE 78(9), 1415–1442 (1990)Google Scholar
  101. 101.
    P. Rösch, M. Harz, M. Schmitt, K.D. Peschke, O. Ronneberger, H. Burkhardt, H.W. Motzkus, M. Lankers, S. Hofer, H. Thiele, J. Popp, Appl. Environ. Microbiol. 71(3), 1626–37 (2005)Google Scholar
  102. 102.
    M. Krause, P. Rösch, B. Radt, J. Popp, Anal. Chem. 80(22), 8568–8575 (2008)Google Scholar
  103. 103.
    M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, J. Popp, Analyst 130(11), 1543–1550 (2005)Google Scholar
  104. 104.
    E. Widjaja, W. Zheng, Z. Huang, Int. J. Oncol. 32(3), 653–662 (2008)Google Scholar
  105. 105.
    P. Rösch, M. Harz, K.-D. Peschke, O. Ronneberger, H. Burkhardt, J. Popp, Biopolymers 82(4), 312–316 (2006)Google Scholar
  106. 106.
    U. Thissen, M. Pepers, B. Ustün, W.J. Melssen, L.M.C. Buydens, Chemometr. Intell. Lab. Syst. 73(2), 169–179 (2004)Google Scholar
  107. 107.
    T.C. Bakker Schut, R. Wolthuis, P.J. Caspers, G.J. Puppels, J. Raman Spectrosc. 33(7), 580–585 (2002)ADSGoogle Scholar
  108. 108.
    N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, J. Raman Spectrosc. 33(7), 564–573 (2002)ADSGoogle Scholar
  109. 109.
    P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, N. Stone, Brit. J. Cancer 92 (12), 2166–2170 (2005)Google Scholar
  110. 110.
    I. Notingher, G. Jell, P.L. Notingher, I. Bisson, O. Tsigkou, J.M. Polak, M.M. Stevens, L.L. Hench, J. Mol. Struct. 744–747(SPEC. ISS.), 179–185 (2005)Google Scholar
  111. 111.
    S. Koljenovicé, L.-P. Choo-Smith, T.C.B. Schut, J.M. Kros, H.J. Van den Berge, G.J. Puppels, Lab. Invest. 82(10), 1265–1277 (2002)Google Scholar
  112. 112.
    A. Nijssen, K. Maquelin, L.F. Santos, P.J. Caspers, T.C. Bakker Schut, J.C. den Hollander, M.H.A. Neumann, G.J. Puppels, Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy, J. Biomed. Opt. 12(3), article number 034004 (2007)Google Scholar
  113. 113.
    F.M. Lyng, E.Ó Faoláin, J. Conroy, A.D. Meade, P. Knief, B. Duffy, M.B. Hunter, J.M. Byrne, P. Kelehan, H.J. Byrne, Exp. Mol. Pathol. 82(2), 121–129 (2007)Google Scholar
  114. 114.
    S.K. Teh, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, Z. Huang, Br. J. Cancer 98(2), 457–465 (2008)Google Scholar
  115. 115.
    A. Molckovsky, L.-M. Wong Kee Song, M.G. Shim, N.E. Marcon, B.C. Wilson, Gastrointest. Endosc. 57(3), 396–402 (2003)Google Scholar
  116. 116.
    J.L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-Garciéa, R. Huerta-Franco, J.L. Gonzaélez-Trujillo, C.A. Ramiérez-Alvarado, G. Gutieérrez-Juaérez, C. Medina-Gutieérrez, Laser. Med. Sci. 22(4), 229–236 (2007)Google Scholar
  117. 117.
    J.M. Reyes-Goddard, N. Barr, H., Stone, Photodiagn. Photodyn. Ther. 5(1), 42–49 (2008)Google Scholar
  118. 118.
    M.M. Paradkar, J. Irudayaraj, Food Chem. 76(2), 231–239 (2002)Google Scholar
  119. 119.
    V. Baeten, P. Hourant, M.T. Morales, R. Aparicio, J. Agr. Food Chem. 46(7), 2638–2646 (1998)Google Scholar
  120. 120.
    L. Silveira Jr., S. Sathaiah, R.A. Zngaro, M.T.T. Pacheco, M.C. Chavantes, C.A.G. Pasqualucci, Laser. Surg. Med. 30(4), 290–297 (2002)Google Scholar
  121. 121.
    I. Notingher, G. Jell, U. Lohbauer, V. Salih, L.L. Hench, J. Cell. Biochem. 92(6), 1180–1192 (2004)Google Scholar
  122. 122.
    C. Medina-Gutieérrez, C. Frausto-Reyes, J.L. Quintanar-Stephano, R. Sato-Berrué, Spectrochim. Acta, Part A 60(10), 2269–2274 (2004)ADSGoogle Scholar
  123. 123.
    J. G. Thakur, H. Dai, G. K. Serhatkulu, R. Naik, V. M. Naik, A. Cao, A. Pandya, G. W. Auner, R. Rabah, M. D. Klein, C. J. Freeman, Raman Spectrosc. 38, 127–134 (2007)Google Scholar
  124. 124.
    R.E. Kast, G.K. Serhatkulu, A. Cao, A.K. Pandya, H. Dai, J.S. Thakur, V.M. Naik, R. Naik, M.D. Klein, G.W. Auner, Biopolymers 89(3), 235 (2008)Google Scholar
  125. 125.
    K. Pandya, G. Serhatkulu, A. Cao, R. Kast, H. Dai, R. Rabah, J. Poulik, S. Banerjee, R. Naik, V. Adsay, G. Auner, M. Klein, J. Thakur, F. Sarkar, Pancreas 36(2), e1–e8 (2008)Google Scholar
  126. 126.
    M.F. Escoriza, J.M. Vanbriesen, S. Stewart, J. Maier, Appl. Spectrosc. 61(8), 812–823 (2007)ADSGoogle Scholar
  127. 127.
    R.H. Brody, H.G.M. Edwards, A.M. Pollard, Anal. Chim. Acta 427(2), 223–232 (2001)Google Scholar
  128. 128.
    H.G.M. Edwards, N.F. Nik Hassan, N. Arya, J. Raman Spectrosc. 37(1–3), 353–360 (2006)ADSGoogle Scholar
  129. 129.
    K. De Gussem, P. Vandenabeele, A. Verbeken, L. Moens, Anal. Bioanal. Chem. 387(8), 2823–2832 (2007)Google Scholar
  130. 130.
    A. Taleb, J. Diamond, J.J. McGarvey, J.R. Beattie, C. Toland, P.W. Hamilton, J. Phys. Chem. B 110(39), 19625–19631 (2006)Google Scholar
  131. 131.
    P. Vandenabeele, L. Moens, Analyst 128(2), 187–193 (2003)Google Scholar
  132. 132.
    C.A. Lieber, S.K. Majumder, D. Billheimer, D.L. Ellis, A. Mahadevan-Jansen, J. Biomed. Opt. 13(2), 024013 (2008)ADSGoogle Scholar
  133. 133.
    Y. Cheng, IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)Google Scholar
  134. 134.
    T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)Google Scholar
  135. 135.
    J.R. Quinlan, Mach. Learn. 1, 81–106 (1986)Google Scholar
  136. 136.
    S.-J. Baek, A. Park, S. Kang, Y. Won, J.Y. Kim, S.Y. Na, Lect. Notes Comput. Sci. (Part 2) 4492, 1240–1247 (2007)Google Scholar
  137. 137.
    T.K. Ho, IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)ADSGoogle Scholar
  138. 138.
    M. Mitchell, An Introduction to Genetic Algorithms(Bradford Books, Cambridge, 1999)Google Scholar
  139. 139.
    M.H. Hennessy, A.M. Kelley, Phys. Chem. Chem. Phys. 6(6), 1085–1095 (2004)Google Scholar
  140. 140.
    D. Broadhurst, R. Goodacre, A. Jones, J.J. Rowland, D.B. Kell, Anal. Chim. Acta 348 (1–3), 71–86 (1997)Google Scholar
  141. 141.
    R.M. Jarvis, R. Goodacre, Bioinformatics 21(7), 860–868 (2005)Google Scholar
  142. 142.
    R. Goodacre, Vib. Spectrosc. 32(1 SPEC.), 33–45 (2003)Google Scholar
  143. 143.
    D.I. Ellis, R. Goodacre, Analyst 131(8), 875–885 (2006)ADSGoogle Scholar
  144. 144.
    D.I. Ellis, W.B. Dunn, J.L. Griffin, J.W. Allwood, R. Goodacre, Pharmacogenomics 8(9), 1243–1266 (2007)Google Scholar
  145. 145.
    B.K. Lavine, C.E. Davidson, A.J. Moores, P.R. Griffiths, Appl. Spectrosc. 55(8), 960–966 (2001)ADSGoogle Scholar
  146. 146.
    E. Seli, D. Sakkas, R. Scott, S.C. Kwok, S.M. Rosendahl, D.H. Burns, Fertil.Steril. 88(5), 1350–1357 (2007)Google Scholar
  147. 147.
    S.Z. Selim, M.A. Ismail, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 81–87 (1984)MATHGoogle Scholar
  148. 148.
    A.K. Jain, R.C. Dubes, Algorithms for Clustering Data(Prentice Hall, New Jersey, 1988), p. 356Google Scholar
  149. 149.
    S. Koljenovicé, T.C. Bakker Schut, J.P. van Meerbeeck, A.P.W.M. Maat, S.A. Burgers, P.E. Zondervan, J.M. Kros, G.J. Puppels, J. Biomed. Opt. 9(6), 1187–1197 (2004)ADSGoogle Scholar
  150. 150.
    S.T. Nandagawali, J.S. Yerramshetty, O. Akkus, J. Biomed Mater. Res. A 82(3), 611–617 (2007)Google Scholar
  151. 151.
    R. Xu, D. Wunsch, Clustering(IEEE Press Series on Computational Intelligence, Wiley, 2009)Google Scholar
  152. 152.
    M. de Veij, A. Deneckere, P. Vandenabeele, D. de Kaste, L. Moens, J. Pharm. Biomed. Anal. 46(2), 303–309 (2008)Google Scholar
  153. 153.
    L. Chrit, C. Hadjur, S. Morel, G. Sockalingum, G. Lebourdon, F. Leroy, M. Manfait, J. Biomed. Opt. 10(4), article number 044007 (2005)Google Scholar
  154. 154.
    P. Lasch, J. Kneipp, Biomedical Vibrational Spectroscopy (Wiley-Interscience, Hoboken, 2008)Google Scholar
  155. 155.
    K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. Van Den Braak, H.Ph. Endtz, D. Naumann, G.J. Puppels, J. Microbiol. Methods 51(3), 255–271 (2002)Google Scholar
  156. 156.
    P. Daniel, P. Picart, L. Bendriaa, G. D. Sockalingum, I. Adt, Th. Charrier, M. J. Durand, F. Ergan, M. Manfait, G. Thouand, Spectrosc. Lett. 41(1), 19–28 (2008)ADSGoogle Scholar
  157. 157.
    R.A. Dluhy, S. Shanmukh, L. Jones, Y.-P. Zhao, J.D. Driskell, R.A. Tripp, Anal. Bioanal. Chem. 390(6), 1551–1555 (2008)Google Scholar
  158. 158.
    I.S. Patel, W.R. Premasiri, D.T. Moir, L.D. Ziegler, J. Raman Spectrosc. 39(11), 1660–1672 (2008)ADSGoogle Scholar
  159. 159.
    B.W.D. De Jong, T.C.B. Schut, K. Maquelin, T. Van Der Kwast, C.H. Bangma, D.-J. Kok, G.J. Puppels, Anal. Chem. 78(22), 7761–7769 (2006)Google Scholar
  160. 160.
    I. Noda, Appl. Spectrosc. 44(4), 550–561 (1990)MathSciNetADSGoogle Scholar
  161. 161.
    I. Noda, J. Am. Chem. Soc. 111(21), 8116–8118 (1989)Google Scholar
  162. 162.
    L. Ashton, B. Czarnik-Matusewicz, E.W. Blanch, J. Mol. Struct. 799(1–3), 61–71 (2006)ADSGoogle Scholar
  163. 163.
    R. Bhargava, S.-Q. Wang, J.L. Koenig, Appl. Spectrosc. 54(11), 1690–1706 (2000)ADSGoogle Scholar
  164. 164.
    D.C. Fernandez, R. Bhargava, S.M. Hewitt, I.W. Levin, Nat. Biotech. 23(4), 469–474 (2005)Google Scholar
  165. 165.
    R.K Reddy, R. Bhargava, Anal. Chem. Submitted (2008)Google Scholar
  166. 166.
    X. Llora, A. Priya, R. Bhargava, Observer-invariant histopathology using genetics-based machine learning. Nat. Comput. 8, 101–120 (2009)MATHGoogle Scholar
  167. 167.
    O. Svensson, M. Josefson, F.W. Langkilde, Chemometr. Intell. Lab. Syst. 49(1), 49–66 (1999)Google Scholar
  168. 168.
    C. Xie, J. Mace, M.A. Dinno, Y.Q. Li, W. Tang, R.J. Newton, P.J. Gemperline, Anal. Chem. 77(14), 4390–4397 (2005)Google Scholar
  169. 169.
    H. Georg Schulze, L. Shane Greek, B.B. Gorzalka, A.V. Bree, M.W. Blades, R.F.B. Turner, J. Neurosci. Methods 56(2), 155–167 (1995)Google Scholar
  170. 170.
    K. Gaus , P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, J. Popp, Biopolymers 82(4) 286–290 (2005)Google Scholar
  171. 171.
    M.J. McShane, B.D. Cameron, G.L. Coteé, M. Motamedi, C.H. Spiegelman, Anal. Chim. Acta 388(3), 251–264 (1999)Google Scholar
  172. 172.
    R. Kohavi, G.H. John, Artif. Intell. 97(1–2), 273–324 (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Bioengineering, Micro and Nanotechnology Laboratory, National Center for Supercomputing Applications and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations