Skip to main content

Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

  • Chapter
  • First Online:
Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman–based tools are being developed for the biochemical analysis of cellular processes [5–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.-K. Prahl et al., Zeitschrift für Naturforschung 40c, 621 (1986)

    Google Scholar 

  2. C.J. Keijzer, New Phytol. 105, 499 (1987)

    Article  Google Scholar 

  3. G. Shaw, A. Yeadon, J. Chem. Soc. C 16 (1966)

    Google Scholar 

  4. V.N. Paunov, G. Mackenzie, S.D. Stoyanov, J. Mater. Chem. 17, 609 (2007)

    Article  Google Scholar 

  5. H.-J. van Manen et al., PNAS 102, 10159 (2005)

    Article  Google Scholar 

  6. H.J. Van Manen, C. Otto, Nano Lett. 7, 1631 (2007)

    Article  ADS  Google Scholar 

  7. B.R. Wood, B. Tait, D. McNaughton, Biochim. Biophys. Acta 1539, 58 (2001)

    Article  Google Scholar 

  8. J. Kneipp et al., J. Raman Spectrosc. (2008). doi: 10.1002/jrs.2060

    Google Scholar 

  9. T. Bakker Schut et al., Anal. Chem. 72, 6010 (2000)

    Article  Google Scholar 

  10. J.J. Baraga, M.S. Feld, R.P. Rava, Proc. Natl. Acad. Sci. U S A 89, 3473 (1992)

    Article  ADS  Google Scholar 

  11. G. Breuzard et al., Biochem. Biophys. Res. Commun. 329, 64 (2005)

    Article  Google Scholar 

  12. C.J. Frank et al., Anal. Chem. 66, 319 (1994)

    Article  Google Scholar 

  13. E.B. Hanlon et al., Phys. Med. Biol. 45, R1 (2000)

    Article  ADS  Google Scholar 

  14. D. Hutsebaut et al., Syst. Appl. Microbiol. 29, 650 (2006)

    Article  Google Scholar 

  15. K. Maquelin et al., Anal. Chem. 72, 12 (2000)

    Article  Google Scholar 

  16. G.J. Puppels et al., Nature 347, 301 (1990)

    Article  ADS  Google Scholar 

  17. A. Otto, in Light Scattering in Solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects, ed. by M. Cardona, G. Guntherodt (Springer-Verlag, Berlin, 1984), p. 289

    Google Scholar 

  18. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  19. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  20. B.N.J. Persson, Chem. Phys. Lett. 82, 561 (1981)

    Article  ADS  Google Scholar 

  21. K. Kneipp et al., Phys. Rev. Lett. 76, 2444 (1996)

    Article  ADS  Google Scholar 

  22. Z.H. Sun et al., J. Phys. Chem. C 112, 6093 (2008)

    Google Scholar 

  23. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  24. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  25. T. Vo-Dinh, L.R. Allain, D.L. Stokes, J. Raman Spectrosc. 33, 511 (2002)

    Article  ADS  Google Scholar 

  26. C.R. Yonzon et al., Anal. Chem. 76, 78 (2004)

    Article  Google Scholar 

  27. L. Zeiri, S. Efrima, J. Raman Spectrosc. 36, 667 (2005)

    Article  ADS  Google Scholar 

  28. K. Kneipp et al., J. Phys. Condens. Matter 14, R597 (2002)

    Article  ADS  Google Scholar 

  29. K. Kneipp et al., Phys. Rev. E 57, R6281 (1998)

    Article  ADS  Google Scholar 

  30. H.X. Xu et al., Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  31. S. Habuchi et al., J. Am. Chem. Soc. 125, 8446 (2003)

    Article  Google Scholar 

  32. Y.W.C. Cao, R.C. Jin, C.A. Mirkin, Science 297, 1536 (2002)

    Article  ADS  Google Scholar 

  33. Y.C. Cao et al., J. Am. Chem. Soc. 125, 14676 (2003)

    Article  Google Scholar 

  34. D. Graham, K. Faulds, Chem. Soc. Rev. 37, 1042 (2008)

    Article  Google Scholar 

  35. S. Efrima, B.V. Bronk, J. Phys. Chem. B 102, 5947 (1998)

    Article  Google Scholar 

  36. L. Zeiri et al., Colloid Surf. A-Physicochem. Eng. Asp. 208, 357 (2002)

    Article  Google Scholar 

  37. R.M. Jarvis, A. Brooker, R. Goodacre, Anal. Chem. 76, 5198 (2004)

    Article  Google Scholar 

  38. R.M. Jarvis, R. Goodacre, Chem. Soc. Rev. 37, 931 (2008)

    Article  Google Scholar 

  39. X.Y. Zhang, N.C. Shah, R.P. Van Duyne, Vib. Spectrosc. 42, 2 (2006)

    Article  Google Scholar 

  40. R. Zenobi, V. Deckert, Angew. Chem.-Int. Ed. 39, 1746 (2000)

    Article  Google Scholar 

  41. C. Budich et al., J. Microsc. 229, 533 (2008)

    Article  MathSciNet  Google Scholar 

  42. N.C. Shah et al., Anal. Chem. 79, 6927 (2007)

    Article  Google Scholar 

  43. O. Lyandres et al., Anal. Chem. 77, 6134 (2005)

    Article  Google Scholar 

  44. P. Piffanelli, J.H.E. Ross, D.J. Murphy, Sex. Plant Reprod. 11, 65 (1998)

    Article  Google Scholar 

  45. R.C. Lord et al., Spectrochim. Acta A-Mol. Biomol. Spectrosc. 41, 199 (1985)

    Article  ADS  Google Scholar 

  46. R.W. Scott, M.J. Strohl, Phytochemistry 1, 189 (1962)

    Article  Google Scholar 

  47. J. Ring, Curr. Opin. Immunol. 13, 701 (2001)

    Article  Google Scholar 

  48. R. Manoharan et al., Appl. Spectrosc. 45, 307 (1991)

    Article  ADS  Google Scholar 

  49. M.L. Laucks et al., J. Aerosol. Sci. 31, 307 (2000)

    Article  Google Scholar 

  50. A.R. Boyain-Goitia et al., Appl. Opt. 42, 6119 (2003)

    Article  ADS  Google Scholar 

  51. N.P. Ivleva, R. Niessner, U. Panne, Anal. Bioanal. Chem. 381, 261 (2005)

    Article  Google Scholar 

  52. F. Schulte et al., Anal. Chem. 80, 9551 (2008)

    Article  Google Scholar 

  53. C.S. Pappas et al., Appl. Spectrosc. 57, 23 (2003)

    Article  ADS  Google Scholar 

  54. A. Sengupta, M.L. Laucks, E.J. Davis, Appl. Spectrosc. 59, 1016 (2005)

    Article  ADS  Google Scholar 

  55. M.N. Siamwiza et al., Biochemistry 14, 4870 (1975)

    Article  Google Scholar 

  56. P.F. Vanbergen, M.E. Collinson, J.W. Deleeuw, Grana, 18 (1993)

    Google Scholar 

  57. E. Dominguez et al., Grana 37, 93 (1998)

    Article  MathSciNet  Google Scholar 

  58. D. Southworth, Am. J. Bot. 61, 36 (1974)

    Article  Google Scholar 

  59. D.L. Massart, L. Kaufman, The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis (Wiley, New York, 1983)

    Google Scholar 

  60. D. Naumann, D. Helm, H. Labischinski, Nature 351, 81 (1991)

    Article  ADS  Google Scholar 

  61. C. Kirschner et al., J. Clin. Microbiol. 39, 1763 (2001)

    Article  Google Scholar 

  62. K. Maquelin et al., J. Microbiol. Methods 51, 255 (2002)

    Article  Google Scholar 

  63. J.H. Williams, W.E. Friedman, M.L. Arnold, Proc. Natl. Acad. Sci. U S A 96, 9201 (1999)

    Article  ADS  Google Scholar 

  64. J.H. Williams, W.J. Boecklen, D.J. Howard, Heredity 87, 680 (2001)

    Article  Google Scholar 

  65. L. Van Valen, Taxon 25, 233 (1976)

    Article  Google Scholar 

  66. J. Brooks, G. Shaw, Nature 219, 532 (1968)

    Article  ADS  Google Scholar 

  67. H. Kano, H.O. Hamaguchi, Chem. Lett. 35, 1124 (2006)

    Article  Google Scholar 

  68. S. Sufrà et al., J. Raman Spectrosc. 6, 267 (1977)

    Article  ADS  Google Scholar 

  69. V.R. Salares et al., J. Phys. Chem. 80, 1137 (1976)

    Article  Google Scholar 

  70. M. Veronelli, G. Zerbi, R. Stradi, J. Raman Spectrosc. 26, 683 (1995)

    Article  ADS  Google Scholar 

  71. R.J. Weesie et al., Biospectroscopy 5, 19 (1999)

    Article  Google Scholar 

  72. A. Andreeva et al., Photochem. Photobiol. 83, 1301 (2007)

    Article  Google Scholar 

  73. J.W. Jung, S.K. Lee, J. Sci. Food Agric. 86, 2296 (2006)

    Article  Google Scholar 

  74. M.N. Merzlyak et al., Physiol. Plant. 104, 661 (1998)

    Article  Google Scholar 

  75. B. Pettinger et al., Phys. Rev. Lett. 92, 96 (2004)

    Article  Google Scholar 

  76. A. Rasmussen, V. Deckert, J. Raman Spectrosc. 37, 311 (2006)

    Article  ADS  Google Scholar 

  77. A. Shamsaie et al., JBO Lett. 12, 020502 (2007)

    ADS  Google Scholar 

  78. M.B. Wabuyele et al., Rev. Sci. Instrum. 76 (2005)

    Google Scholar 

  79. C. Eliasson et al., Chemometr. Intell. Lab. Syst. 81, 13 (2006)

    Article  Google Scholar 

  80. C.E. Talley et al., Anal. Chem. 76, 7064 (2004)

    Article  Google Scholar 

  81. G. Breuzard et al., Biochem. Biophys. Res. Commun. 320, 615 (2004)

    Article  Google Scholar 

  82. K. Kneipp et al., Appl. Spectrosc. 56, 150 (2002)

    Article  ADS  Google Scholar 

  83. J. Kneipp, H. Kneipp, K. Kneipp, Proc. Natl. Acad. Sci. U S A 103, 17149 (2006)

    Article  ADS  Google Scholar 

  84. J. Kneipp et al., Nano Lett. 6, 2225 (2006)

    Article  ADS  Google Scholar 

  85. J. Kneipp et al., Anal. Chem. 77, 2381 (2005)

    Article  Google Scholar 

  86. S. Sanchez-cortes, J.V. Garcia Ramos, J. Mol. Struct. 274, 33 (1992)

    Article  ADS  Google Scholar 

  87. R.W. VanDyke, Am. J. Physiol. 265, C901 (1993)

    Google Scholar 

  88. M. Grabe, G. Oster, J. Gen. Physiol. 117, 329 (2001)

    Article  Google Scholar 

  89. R.W. Van Dyke, Hepatology 32, 1357 (2000)

    Article  Google Scholar 

  90. A. Sengupta, N. Brar, E.J. Davis, J. Colloid Interface Sci. 309, 36 (2007)

    Article  Google Scholar 

  91. M. Grote et al., J. Allergy Clin. Immunol. 108, 109 (2001)

    Article  Google Scholar 

  92. P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982)

    Article  Google Scholar 

  93. B. Giese, D. McNaughton, J. Phys. Chem. B 106, 101 (2002)

    Article  Google Scholar 

  94. C. Otto et al., J. Phys. Chem. 92, 1239 (1988)

    Article  Google Scholar 

  95. M. Bolboaca, W. Kiefer, J. Popp, J. Raman Spectrosc. 33, 207 (2002)

    Article  ADS  Google Scholar 

  96. S. Stewart, P.M. Fredericks, Spectrochim. Acta A 55, 1641 (1999)

    Article  ADS  Google Scholar 

  97. R. Aroca, R. Bujalski, Vib. Spectrosc. 19, 11 (1999)

    Article  Google Scholar 

  98. Y. Zheng, P.R. Carey, B.A. Palfey, J. Raman Spectrosc. 35, 521 (2004)

    Article  ADS  Google Scholar 

  99. K. Sokolov et al., Appl. Spectrosc. 47, 515 (1993)

    Article  ADS  Google Scholar 

  100. Z. Jurasekova et al., J. Raman Spectrosc. 37, 1239 (2006)

    Article  ADS  Google Scholar 

  101. J. Bukowska, K. Jackowska, J. Electroanal. Chem. 322, 347 (1992)

    Article  Google Scholar 

  102. U. Abbasoglu et al., Arch. Pharm. 324, 379 (1991)

    Article  Google Scholar 

  103. J. Quetin-Leclercq et al., Planta Med. 61, 475 (1995)

    Article  Google Scholar 

  104. F.S. Parker, Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry (Plenum Press, New York, 1983)

    Google Scholar 

  105. W.L. Peticolas et al., J. Raman Spectrosc. 27, 571 (1996)

    Article  ADS  Google Scholar 

  106. E.W. Small, W.L. Peticolas, Biopolymers 10, 69 (1971)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the group of Dieter Naumann, Robert-Koch-Institut Berlin, for providing the cryostat and Peter Lasch, RKI and CytoSpec, Inc. for CytoSpec software. J.K. is grateful to Katrin Kneipp, Wellman Center for Photomedicine, Harvard Medical School, Boston, for providing Raman setups for SERS experiments in live cells. We gratefully acknowledge funding of this research by Deutsche Forschungsgemeinschaft (Grants DFG KN557/9-1 and PA 716/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Schulte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulte, F., Joseph, V., Panne, U., Kneipp, J. (2010). Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples. In: Matousek, P., Morris, M. (eds) Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02649-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02649-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02648-5

  • Online ISBN: 978-3-642-02649-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics