Skip to main content

Abstract

The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in excised tissue samples and synthetic preparations and thus to identify potential biomarkers for the onset of this disease. Using resonance Raman detection techniques, the concentration and spatial distribution of macular pigment, a protective compound, can be detected in the living human retina Useable in clinical settings for patient screening, the technology is suitable to investigate correlations between pigment concentration levels and risk for macular degeneration and to monitor increases in pigment levels occurring as a result of dietary intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.J. Erckens, F.H.M. Jongsma, J.P. Wickstedt, F. Hendrikse, W.F. March, M. Motamedi, Lasers Med. Sci. 16, 236 (2001)

    Article  Google Scholar 

  2. I. Nabier, I. Chourpa, M. Manfeit, J. Raman Spectrosc. 25, 13 (1994)

    Article  ADS  Google Scholar 

  3. N.-T. Yu, E.J. East, J. Biol. Chem. 250, 2196 (1975)

    Google Scholar 

  4. R.A. Schachar, S.A. Solin, Invest. Ophthalmol. Vis. Sci. 14, 380 (1975)

    Google Scholar 

  5. A. Bertoluzza, C. Fagnano, P. Monti, R. Caramazza, M. Cellini, J. Raman Spectrosc. 17, 133 (1986)

    Article  ADS  Google Scholar 

  6. N.-T. Yu, M. Bando, J.F.R. Kuck, Invest. Ophthalmol. Vis. Sci. 26, 97 (1985)

    Google Scholar 

  7. N.-T. Yu, J.F.R. Kuck, C.C. Askren, Curr. Eye Res. 1, 615 (1982)

    Article  Google Scholar 

  8. J.J. Duindam, G.F.J.M. Vrensen, C. Otto, J. Greve, Invest. Ophthalmol. Vis. Sci. 39, 94 (1998)

    Google Scholar 

  9. D. Borchman, Y. Ozaki, O.P. Lamba, W.C. Byrdwell, M.C. Yappert, Biospectroscopy 2, 113 (1996)

    Article  Google Scholar 

  10. I.V. Yaroslavsky, A.N. Yarovslavsky, C. Otto, G.J. Puppels, G.F.J.M. Vrensen, H. Duindam, J. Greve, Exp. Eye Res. 59, 393 (1994)

    Article  Google Scholar 

  11. A. Huizenga, A.C.C. Bot, F.F.M. De Mul, G.F.J.M. Vrensen, J. Greve, Exp. Eye Res. 48, 487 (1989)

    Article  Google Scholar 

  12. S. Shih, Y.M. Weng, S. Chen, S.L. Huang, C.H. Huang, W. Chen, Arch. Biochem. Biophys. 420, 79 (2003)

    Article  Google Scholar 

  13. A. Mizuno, M. Tsuji, K. Fujii, K. Kawauchi, Y. Ozaki, Jpn. J. Ophthalmol. 38, 44 (1994)

    Google Scholar 

  14. N.J. Bauer, J.P. Wickstedt, F.H.M. Jongsma, W.F. March, F. Hendrikse, M. Motamedi, Invest. Ophthalmol. Vis. Sci. 39, 831 (1998)

    Google Scholar 

  15. R.J. Erckens, F.H.M. Jongsma, J.P. Wicksted, F. Hendrikse, W.F. March, M. Motamedi, J. Raman Spectrosc. 32, 733 (2001)

    Article  ADS  Google Scholar 

  16. N.J.C. Bauer, F. Hendrikse, W.F. March, Cornea 18, 483 (1999)

    Article  Google Scholar 

  17. A. Katz, E.F. Kruger, G. Minko, C.H. Liu, R.B. Rosen, R.R. Alfano, J. Biomed. Opt. 8, 167 (2003)

    Article  ADS  Google Scholar 

  18. J. Sebag, S. Nie, K. Reiser, M.A. Charles, N.T. Yu, Invest. Ophthalmol. Vis. Sci. 35, 2976 (1994)

    Google Scholar 

  19. T.I. Sideroudi, N.M. Pharmakakis, G.N. Papatheodorou, G.A. Voyiatzis, Lasers Surg. Med. 38, 695 (2006)

    Article  Google Scholar 

  20. K. Hosseini, F.H.M. Jongsma, F. Hendrikse, M. Motamedi, Lasers Surg. Med. 32, 265 (2003)

    Article  Google Scholar 

  21. Th. Sideroudi, N. Pharmakakis, A. Tyrovolas, G. Papatheodorou, G.D. Chryssikos, G.A. Voyiatzis, J. Biomed. Opt. 12, 034005-1 (2007)

    Article  ADS  Google Scholar 

  22. K. Hosseini, W. March, F.H.M. Jongsma, F. Hendrikse, M. Motamedi, J. Ocular Pharmacol. Ther. 18, 277 (2002)

    Article  Google Scholar 

  23. J. Qu, B. Wilson, D. Suria, Appl. Opt. 38, 5491 (1999)

    Article  ADS  Google Scholar 

  24. M.J. Goetz et al., IEEE Trans. Biomed. Eng. 42, 728 (1995)

    Article  Google Scholar 

  25. R.J. Erckens, M. Motamedi, W. March, J.P. Wickstedt, J. Raman Spectrosc. 28, 293 (1997)

    Article  ADS  Google Scholar 

  26. J. Berger et al., Appl. Opt. 38, 2916 (1999)

    Article  ADS  Google Scholar 

  27. J.L. Lambert, J.M. Morookian, S.J. Sirk, M. Borchert, J. Raman Spectrosc. 33, 524 (2002)

    Article  ADS  Google Scholar 

  28. K. Dehring, A.S. Smukler, B.J. Roessler, M. Morris, Appl. Spectrosc. 60, 366 (2006)

    Article  ADS  Google Scholar 

  29. J.V. Glenn, J.R. Beattie, L. Barrett, N. Frizzell, S.R. Thorpe, M.E. Boulton, J.J. McGarvey, A.W. Stitt, FASEB J. 21, 3542 (2007)

    Article  Google Scholar 

  30. B.H. Wolfenbuttel, C.M. Boulanger, F.R. Crijns, M.S. Huijberts, P. Poitevin, G.N. Swennen, S. Vasan, J.J. Egan, P. Ulrich, A. Cerami, B.I. Levy, Proc. Natl. Acad. Sci. U S A 95, 4630 (1998)

    Article  ADS  Google Scholar 

  31. Age-Related Eye Disease Study Research Group, AREDS Report No. 22, Arch. Ophthalmol. 125, 1225 (2007)

    Google Scholar 

  32. A.J. Whitehead, J.A. Mares, R.P. Danis, Arch. Ophthalmol. 124, 1038 (2006)

    Article  Google Scholar 

  33. Y. Koyama, Resonance Raman spectroscopy, in Carotenoids, Vol 1B, Spectroscopy, ed. by G. Britton, S. Liaaen-Jensen, H. Pfander (Birkhäuser, Basel, 1995), pp. 135–146

    Google Scholar 

  34. I.V. Ermakov, M. Sharifzadeh, M.R. Ermakova, W. Gellermann, J. Biomed. Opt. 10(6), 064028-1–064028-18 (2005)

    Article  ADS  Google Scholar 

  35. D.S. Michaud, D.D. Feskanich, E.B. Rimm, et al., Am. J. Clin. Nutr. 92, 990–997 (2000)

    Google Scholar 

  36. L.N. Kolonel, J.H. Hankin, A.S. Whittemore, et al., Cancer Epidemiol. Biomarkers Prev. 9, 795–804 (2000)

    Google Scholar 

  37. S. Liu, J.E. Manson, I.M. Lee, et al., Fruit and vegetable intake and risk of cardiovascular disease: The women’s health study, Am. J. Clin. Nutr. 72, 922–928 (2000)

    Google Scholar 

  38. P.S.B. Bernstein, M.D. Yoshida, N.B. Katz, R.W. McClane, W. Gellermann, Invest. Ophthalmol. Vis. Sci. 39, 2003 (1998)

    Google Scholar 

  39. I.V. Ermakov, R.W. McClane, W. Gellermann, P.S. Bernstein, Opt. Lett. 26, 202 (2001)

    Article  ADS  Google Scholar 

  40. W. Gellermann, I.V. Ermakov, M.R. Ermakova, R.W. McClane, D.Y. Zhao, P.S. Bernstein, J. Opt. Soc. Am. A 19, 1172 (2002)

    Article  ADS  Google Scholar 

  41. I.V. Ermakov, M.R. Ermakova, W. Gellermann, Appl. Spectrosc. 59, 861 (2005)

    Article  ADS  Google Scholar 

  42. I.V. Ermakov, M.R. Ermakova, P.S. Bernstein, W. Gellermann, J. Biomed. Opt. 9, 139 (2004)

    Article  ADS  Google Scholar 

  43. W. Gellermann, I.V. Ermakov, R.W. McClane, P.S. Bernstein, Opt. Lett. 27, 833 (2002)

    Article  ADS  Google Scholar 

  44. M. Sharifzadeh, D.-Y. Zhao, P.S. Bernstein, W. Gellermann, J. Opt. Soc. Am. A 25, 947 (2008)

    Article  ADS  Google Scholar 

  45. S. Richer, W. Stiles, L. Statkute, J. Pulido, J. Frankowski, D. Rudy, K. Pei, M. Tsipursky, J. Nyland, Optometry 75, 216 (2004)

    Google Scholar 

  46. M. Sharifzadeh, P.S. Bernstein, W. Gellermann, J. Opt. Soc. Am. A 23, 2373 (2006)

    Article  ADS  Google Scholar 

  47. T.T.J.M. Berendschot, D. van Norren, Invest. Ophthalmol. Vis. Sci. 47, 709 (2006)

    Article  Google Scholar 

  48. A.G. Robson, J.D. Moreland, D. Pauleikoff, T. Morrissey, G.E. Holder, F.W. Fitzke, A.D. Bird, F.J.G.M.D. van Kuijk, Vision Res. 43, 1765 (2003)

    Article  Google Scholar 

  49. M. Trieschmann, G. Spittal, A. Lommartzsch, E. van Kuijk, F. Fitzke, A.C. Bird, D. Pauleikoff, Graefe’s Arch. Clin. Exp. Ophthalmol. 241, 1006 (2003)

    Article  Google Scholar 

  50. F.C. Delori, Arch. Biochem. Biophys. 430, 156 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Ermakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ermakov, I.V., Sharifzadeh, M., Gellermann, W. (2010). Raman Spectroscopy of Ocular Tissue. In: Matousek, P., Morris, M. (eds) Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02649-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02649-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02648-5

  • Online ISBN: 978-3-642-02649-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics