Skip to main content

The Aging Hair Pigmentary Unit

Abstract

As a highly visual and social species we communicate significantly via our physical appearance. Thus, it is unsurprising that the phenotypic aspects (including color) of our skin and hair feature prominently in such communication. Perhaps, one of the more potent reminders of aging is the change in pigmentation from birth to puberty and through to young adulthood, middle age, and beyond. Indeed, the hair bulb melanocyte may be viewed as an exquisitely sensitive aging sensor. In this context, we can appreciate that the loss of pigmentation from the hair tends to be earlier and much more striking than the age-associated pigmentation changes that we see in the epidermis. This phenotypic difference between the hair follicle and the epidermis-melanocyte subpopulations is of considerable interest, not least as both subpopulations originate from the same embyrologic neural crest and that the melanoctye stem cells in the adult hair follicle can occupy vacant niches in the epidermis. A major source of the differential aging of melanocytes in the hair bulb vs. the epidermis is likely due to the former’s stringent coupling to the hair growth cycle when compared with the latter’s continuous and UV-sensitive melanogenesis. Also likely to be involved is the maintenance of permissive microenvironments in these different skin compartments including their differing redox environments and variable connectivity with neuroendocrine axis. Over the last few years, we and others have striven to develop advanced cell culture methodologies for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture, which may provide research tools to elucidate the regulatory mechanisms of hair follicle pigmentation. Others have assessed the robustness of the hair follicle-melanocyte stem compartment with age and other functional stressors. In the long term, it may be feasible to develop strategies to modulate some of these aging-associated changes in the hair follicle that impinge particularly of the melanocyte populations.

Keywords

  • Hair Follicle
  • Scalp Hair
  • Outer Root Sheath
  • Hair Cycle
  • Hair Bulb

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-02636-2_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-02636-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4

References

  1. Allende MF (1972) The enigmas of pigmentation. JAMA 220(11):1443–1447

    CAS  CrossRef  PubMed  Google Scholar 

  2. Arck PC, Overall R, Spatz K et al (2006) Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J 20:1567–1569

    CAS  CrossRef  PubMed  Google Scholar 

  3. Bandyopadhyay D, Medrano EE (2000) Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann N Y Acad Sci 908:71–84

    CAS  CrossRef  PubMed  Google Scholar 

  4. Bennett DC (1983) Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell 34:445–453

    CAS  CrossRef  PubMed  Google Scholar 

  5. Bennett DC (2003) Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22(20):3063–3069

    CAS  CrossRef  PubMed  Google Scholar 

  6. Böhm M, Luger TA, Tobin DJ, et al (2006) Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol 126(9): 1966–1975

    CrossRef  PubMed  Google Scholar 

  7. Botchkareva NV, Khlgatian M, Longley BJ et al (2001) SCF/c-KIT signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15:645–658

    CAS  CrossRef  PubMed  Google Scholar 

  8. Christoph T, Müller-Röver S, Audring H et al (2000) The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 142(5):862–873

    CAS  CrossRef  PubMed  Google Scholar 

  9. Commo S, Bernard BA (2000) Melanocyte subpopulation turnover during the human hair cycle: an immunohistochemical study. Pigment Cell Res 13:253–259

    CAS  CrossRef  PubMed  Google Scholar 

  10. Commo S, Gaillard O, Thibaut S, et al (2004) Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res 17:488–497

    CAS  CrossRef  PubMed  Google Scholar 

  11. Commo S, Gaillard O, Bernard BA (2004) Human hair graying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br J Dermatol 150(3):435–443

    CAS  CrossRef  PubMed  Google Scholar 

  12. Eisinger M, Marko O (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 79: 2018–2022

    CAS  CrossRef  PubMed  Google Scholar 

  13. Fitzpatrick TB, Brunet P, Kukita A (1958) The nature of hair pigment. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic Press, New York, pp 255–303

    Google Scholar 

  14. Grichnik JM, Burch JA, Schulteis RD, et al (2006) Melanoma, a tumor based on a mutant stem cell? J Invest Dermatol 126(1): 142–153

    CAS  CrossRef  PubMed  Google Scholar 

  15. Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 899:136–147

    CAS  CrossRef  PubMed  Google Scholar 

  16. Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  17. Hegedus ZL (2000) The probable involvement of soluble and deposited melanins, their intermediates and the reactive oxygen side-products in human diseases and aging. Toxicology 145:85–101

    CAS  CrossRef  PubMed  Google Scholar 

  18. Holbrook KA, Underwood RA, Vogel AM, et al (1989) The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat Embryol (Berl) 180(5):443–455

    CAS  CrossRef  Google Scholar 

  19. Horikawa T, Norris DA, Johnson TW et al (1996) DOPA-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2. J Invest Dermatol 106: 28–35

    CAS  CrossRef  PubMed  Google Scholar 

  20. Inomata K, Aoto T, Binh NT, et al (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137(6):1088–1099

    CAS  CrossRef  PubMed  Google Scholar 

  21. Kauser S, Westgate G, Green M, et al (2008) Age-associated down-regulation of catalase in human scalp hair follicle melanocytes. Pigment Cell Res 20(5):432

    Google Scholar 

  22. Keogh EV, Walsh RJ (1965) Rate of graying of human hair. Nature 207:877–878

    CAS  CrossRef  PubMed  Google Scholar 

  23. Lee WS, Lee IW, Ahn SK (1996) Diffuse heterochromia of scalp hair. J Am Acad Dermatol 35:823–825

    CAS  CrossRef  PubMed  Google Scholar 

  24. Mackintosh JA (2001) The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol 211(2):101–113

    CAS  CrossRef  PubMed  Google Scholar 

  25. Medrano EE, Yang F, Boissy R, et al (1994) Terminal differentiation and senescence in the human melanocyte: repression of tyrosine-phosphorylation of the extracellular signal-regulated kinase 2 selectively defines the two phenotypes. Mol Biol Cell 5(4):497–509

    CAS  PubMed  Google Scholar 

  26. Michard Q, Commo S, Belaidi JP, et al (2008) TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress. Free Radic Biol Med 44(6):1023–1031

    CAS  CrossRef  PubMed  Google Scholar 

  27. Nagl W (1995) Different growth rates of pigmented and white hair in the beard: differentiation vs. proliferation? Br J Dermatol 132:94–97

    CAS  CrossRef  PubMed  Google Scholar 

  28. Nishimura EK, Jordan SA, Oshima H et al (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    CAS  CrossRef  PubMed  Google Scholar 

  29. Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724

    CAS  CrossRef  PubMed  Google Scholar 

  30. Pelfini C, Cerimele D, Pisanu G (1969) Aging of the skin and hair growth in man. In: Montagna W, Dobson RL (eds) Advances in biology of the skin – hair growth. Pergamon Press, New York, pp 153–160

    Google Scholar 

  31. Peters EM, Tobin DJ, Botchkareva N, et al (2002) Migration of melanoblasts into the developing murine hair follicle is accompanied by transient c-Kit expression. J Histochem Cytochem 50(6):751–766

    CAS  PubMed  Google Scholar 

  32. Plonka P, Passeron T, Brenner M, et al (2009) What are melanocytes really doing all day long? Exp Dermatol 18(9):799–819

    CAS  CrossRef  PubMed  Google Scholar 

  33. Quevedo WC, Szabo G, Virks J (1969) Influence of age and UV on the population of dopa-positive melanocytes in human skin. J Invest Dermatol 52:287–290

    CAS  PubMed  Google Scholar 

  34. Silberzan I, Thibaut S, De Becker E, et al (2010) Chrono­logical aging of human hair keratin fibers. Int J Cosmetic Sci (in press)

    Google Scholar 

  35. Rees JL (2000) The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res 13:135–140

    CAS  CrossRef  PubMed  Google Scholar 

  36. Rees JL (2006) Plenty new under the sun. J Invest Dermatol 126:1691–1692

    CAS  CrossRef  PubMed  Google Scholar 

  37. Sato S, Kukita A, Jimbow K (1973) Electron microscopic studies of dendritic cells in the human gray and white matrix during anagen. Pigment Cell 1:20–26

    Google Scholar 

  38. Schallreuter KU, Beazley WD, Hibberts NA, et al (1998) Pterins in human hair follicle cells and in the synchronized murine hair cycle. J Invest Dermatol 111:545–550

    CAS  CrossRef  PubMed  Google Scholar 

  39. Slominski A, Paus R, Schadendorf D (1993) Melanocytes as “sensory” and regulatory cells in the epidermis. J Theor Biol 164:103–120

    CAS  CrossRef  PubMed  Google Scholar 

  40. Slominski A, Paus R, Plonka P et al (1994) Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol 102:862–869

    CAS  CrossRef  PubMed  Google Scholar 

  41. Slominski A, Tobin DJ, Shibahara S, et al (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    CAS  CrossRef  PubMed  Google Scholar 

  42. Slominski A, Wortsman J, Plonka PM, et al (2005) Hair follicle pigmentation. J Invest Dermatol 124(1):13–21

    CAS  CrossRef  PubMed  Google Scholar 

  43. Spritz RA (1997) Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan Med Surg 16(1):15–23

    CAS  CrossRef  PubMed  Google Scholar 

  44. Starrico GJR (1961) Mechanism of migration of the melanocytes of the hair follicle into the epidermis following dermabrasion. J Invest Dermatol 36:99–104

    Google Scholar 

  45. Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:449–494

    CAS  PubMed  Google Scholar 

  46. Sugiyama S (1979) Mode of re-differentiation and melanogenesis of melanocytes in murine hair follicle. J Ultrastructural Res 67:40–54

    CAS  CrossRef  Google Scholar 

  47. Tang A, Eller MS, Hara M, et al (1994) E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107:983–992

    CAS  PubMed  Google Scholar 

  48. Thibaut S, De Becker E, Caisey L, et al (2009) Br J Dermatol. [Epub ahead of print]

    Google Scholar 

  49. Thomas AJ, Erickson CA (2008) The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 21(6):598–610

    CAS  CrossRef  PubMed  Google Scholar 

  50. Tobin DJ (1998) A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles. Br J Dermatol 138:795–798

    CAS  CrossRef  PubMed  Google Scholar 

  51. Tobin DJ (2003) The ageing hair follicle pigmentary unit. In: Van Neste D (ed) Hair science and technology. Skinterface srl, Tournai, Belgium, pp 155–168

    Google Scholar 

  52. Tobin DJ (2005) Pigmentation of human hair. In: Tobin DJ (ed) Hair in toxicology – an important biomonitor. The Royal Society of Chemistry, Cambridge, MA, pp 57–88

    CrossRef  Google Scholar 

  53. Tobin DJ (2008) Biology of hair follicle pigmentation. In: Blume-Peytavi U, Tosti A, Whiting D, Trueb R (eds) Hair growth and disorders. Springer, Berlin, pp 51–74

    Google Scholar 

  54. Tobin DJ (2008) Human hair pigmentation – biological aspects. Int J Cosmet Sci 30(4):233–257

    CAS  CrossRef  PubMed  Google Scholar 

  55. Tobin DJ, Bystryn J-C (1996) Different populations of melanocytes are present in hair follicles and epidermis. Pigment Cell Res 9:304–310

    CAS  CrossRef  PubMed  Google Scholar 

  56. Tobin DJ, Kauser S (2005) Hair melanocytes as neuro-endocrine sensors – pigments for our imagination. Mol Cell Endocrinol 243:1–11

    CAS  CrossRef  PubMed  Google Scholar 

  57. Tobin DJ, Paus R (2001) Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36(1):29–54

    CAS  CrossRef  PubMed  Google Scholar 

  58. Tobin DJ, Colen SR, Bystryn J-C (1995) Isolation and long-term culture of human hair-follicle melanocytes. J Invest Dermatol 104:86–89

    CAS  CrossRef  PubMed  Google Scholar 

  59. Tobin DJ, Hagen E, Botchkarev VA, et al (1998) Do hair bulb melanocytes undergo apoptosis during hair follicle regression (catagen)? J Invest Dermatol 111:941–947

    CAS  CrossRef  PubMed  Google Scholar 

  60. Tobin DJ, Slominski A, Botchkarev V, Paus R (1999) The fate of hair follicle melanocytes during the hair growth cycle. J Invest Dermatol Symp Proc 4:323–332

    CAS  CrossRef  Google Scholar 

  61. Tobin DJ, Swanson NN, Pittelkow MR, et al (2000) Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 191: 407–416

    CAS  CrossRef  PubMed  Google Scholar 

  62. Van Neste D, Tobin DJ (2004) Hair cycle and dynamic interactions and changes associated with aging. Micron 35: 193–200

    CrossRef  PubMed  Google Scholar 

  63. Whiteman DC, Parsons PG, Green AC (1999) Determinants of melanocyte density in adult human skin. Arch Dermatol Res 291:511–516

    CAS  CrossRef  PubMed  Google Scholar 

  64. Wood JM, Jimbow K, Boissy RE et al (1999) What’s the use of generating melanin? Exp Dermatol 8:153–164

    CAS  CrossRef  PubMed  Google Scholar 

  65. Wood JM, Decker H, Hartmann H, et al (2009) Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J 23(7):2065–2075

    CAS  CrossRef  PubMed  Google Scholar 

  66. Yoshida H, Kunisada T, Kusakabe M, Nishikawa S, et al (1996) Distinct stages of melanocyte differentiation revealed by analysis of nonuniform pigmentation patterns. Development 122(4):1207–1214

    CAS  PubMed  Google Scholar 

  67. Yoshida Y, Hachiya A, Sriwiriyanont P, et al (2007). Functional analysis of keratinocytes in skin color using a human skin substitute model composed of cells derived from different skin pigmentation types. FASEB J 21(11): 2829–2839

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desmond J. Tobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobin, D.J. (2010). The Aging Hair Pigmentary Unit. In: Trüeb, R., Tobin, D. (eds) Aging Hair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02636-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02636-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02635-5

  • Online ISBN: 978-3-642-02636-2

  • eBook Packages: MedicineMedicine (R0)