Skip to main content

Social insects, major evolutionary transitions and multilevel selection

  • Chapter
Animal Behaviour: Evolution and Mechanisms

Abstract

The history of life is characterised by an increase in biological complexity from simple replicators to multicellular organisms. These major evolutionary transitions have in common that independent entities came together and cooperated and that finally a new entity was formed with a new fitness and a single evolutionary fate. Yet, the stable evolution of cooperation poses a classical Darwinian puzzle: Organisms compete over reproduction and selfish individuals that reap the benefits of the cooperation without paying the costs (cheaters) can invade a population of cooperators and drive the disappearance of cooperation. Social insects have become model organisms to study stable cooperation and how conflict between individuals is resolved. Here, I will first summarise what we have learned from social insect research about the evolution of stable cooperation. Besides little-studied ecological factors that determine the benefits and costs of cooperation, two common mechanisms to prevent the spread of cheaters have been identified: (i) common ancestry and aligned evolutionary interests mainly achieved through relatedness and (ii) enforcement mechanisms that make cheating costly. Then, I will show that similar mechanisms have evolved at other levels of the biological hierarchy that favour cooperation. Thirdly, I will present the multilevel selection approach, which promises to be a useful tool to study evolution at multiple selection levels. I will end by showing how a multilevel selection approach in future research might help to quantify benefits and costs of cooperation, so that insect societies and all major evolutionary transitions alike are being recognised as more than the sum of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325-383

    Google Scholar 

  • Ardlie KG, Silver LM (1996) Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive. Genetics 144:1787-1797

    PubMed  CAS  Google Scholar 

  • Ardlie KG, Silver LM (1998) Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52:1185-1196

    Google Scholar 

  • Axelrod R, Hammond RA, Grafen A (2004) Altruism via kin-selection strategies that reply on arbitrary tags with which they coevolve. Evolution 58:1833-1838

    PubMed  Google Scholar 

  • Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proc Natl Acad Sci USA 98:9703-9706

    PubMed  CAS  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413-440

    PubMed  CAS  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneuborug JL, Aron S, Camazine S (1997) Selforganization in social insects. Trends Ecol Evol 12:188-193

    PubMed  CAS  Google Scholar 

  • Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Curr Biol 17:R673-R683

    PubMed  CAS  Google Scholar 

  • Bourke AFG (1997) Sociality and kin selection in insects. In: Krebs JR, Davies NB (eds) Behavioural Ecology: An Evolutionary Approach, 4th edn. Blackwell, Oxford, pp 203-227

    Google Scholar 

  • Bourke AFG (2007) Social evolution: community policing in insects. Curr Biol 17:R519-R520

    PubMed  CAS  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social Evolution in Ants. Princeton University Press, Princeton

    Google Scholar 

  • Bourke AFG, Ratnieks FLW (1999) Kin conflict over caste determination in social Hymenoptera. Behav Ecol Sociobiol 46:287-297

    Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3-16

    PubMed  CAS  Google Scholar 

  • Burt A, Trivers R (2006) Genes in Conflict. The Biology of Selfish Genetic Elements. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-Organization in Biological Systems. Princeton University Press, Princeton/NJ

    Google Scholar 

  • Cant MA, Field J (2005) Helping effort in a dominance hierarchy. Behav Ecol 16:708-715

    Google Scholar 

  • Cant MA, Llop JB, Field J (2006) Individual variation in social aggression and the probability of inheritance: theory and a field test. Am Nat 167:837-852

    Google Scholar 

  • Cavalier-Smith T, Chao EE-Y (2003) Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J Mol Evol 56:540-563

    PubMed  CAS  Google Scholar 

  • Chapman TW, Crespi BJ, Perry SP (2008) The evolutionary ecology of eusociality in Australian gall thrips: a ‘model clades’ approach. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 57-83

    Google Scholar 

  • Charnov EL (1978) Evolution of eusocial behavior − offspring choice or parental parasitism. J Theor Biol 75:451-465

    PubMed  CAS  Google Scholar 

  • Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science 285:891-893

    PubMed  CAS  Google Scholar 

  • Cosmides ML, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83-129

    PubMed  CAS  Google Scholar 

  • Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. ASM Press, Washington/DC

    Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of Social Insect Colonies: Sex Allocation and Kin Selection. Oxford University Press, Oxford

    Google Scholar 

  • Dampney JR, Barron AB, Oldroyd BP (2004) Measuring the cost of worker reproduction in honeybees: work tempo in an ‘anarchic’ line. Apidologie 35:83-88

    Google Scholar 

  • Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  • Dyer FC (2002) The biology of the dance language. Annu Rev Entomol 47:917-949

    PubMed  CAS  Google Scholar 

  • Emelyanov VV (2003) Mitochondrial connection to the origin of the eukaryotic cell. Europ J Biochem 270:1599-1618

    PubMed  CAS  Google Scholar 

  • Emlen ST (1997) Predicting family dynamics in social vertebrates. In: Krebs JR, Davies NB (eds) Behavioural Ecology: An Evolutionary Approach, 4th edn. Blackwell, Oxford, pp 228-253

    Google Scholar 

  • Fehr E, Fischbacher U (2003) The nature of human altruism. Nature 425:785-791

    PubMed  CAS  Google Scholar 

  • Field J (2008) The ecology and evolution of helping in hover wasps (Hymenoptera: Stenogastrinae). In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 85-107

    Google Scholar 

  • Field J, Foster W, Shreeves G, Sumner S (1998) Ecological constraints on independent nesting in facultatively eusocial hover wasps. Proc R Soc Lond B 265:973-977

    Google Scholar 

  • Field J, Shreeves G, Sumner S (1999) Group size, queuing and helping decisions in facultatively eusocial hover wasps. Behav Ecol Sociobiol 45:378-385

    Google Scholar 

  • Field J, Shreeves G, Sumner S, Casiraghi M (2000) Demographic advantages in the evolution of eusociality. Nature 404:869-871

    PubMed  CAS  Google Scholar 

  • Foster KR (2008) Behavioral ecology: altruism. In: Encyclopedia of Ecology. Elsevier, Amsterdam, pp 154-159

    Google Scholar 

  • Foster KR, Xavier JB (2007) Cooperation: bridging ecology and sociobiology. Curr Biol 17:R319-R321

    PubMed  CAS  Google Scholar 

  • Foster KR, Gulliver J, Ratnieks FLW (2002) Worker policing in the European hornet Vespa crabro. Insectes Soc 49:41-44

    Google Scholar 

  • Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CRL (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693-696

    PubMed  CAS  Google Scholar 

  • Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57-60

    PubMed  Google Scholar 

  • Frank SA (1995) George Price’s contributions to evolutionary genetics. J Theor Biol 175:373-388

    PubMed  CAS  Google Scholar 

  • Frank SA (2003) Perspective: repression of competition and the evolution of cooperation. Evolution 57:693-705

    PubMed  Google Scholar 

  • Gadau J, Fewell JH (2009) Organization of Insect Societies: From Genes to Sociocomplexity. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Gardner A, Foster KR (2008) The evolution and ecology of cooperation − history and concepts. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 1-36

    Google Scholar 

  • Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci USA 104:8913-8917

    PubMed  CAS  Google Scholar 

  • Grafen A (1984) Natural selection, kin selection and group selection. In: Krebs JR, Davies NB (eds) Behavioural Ecology: An Evolutionary Approach, 2nd edn. Blackwell, Oxford, pp 62-84

    Google Scholar 

  • Grafen A (2006) Various remarks on Lehmann and Keller’s article. J Evol Biol 19:1397-1399

    PubMed  CAS  Google Scholar 

  • Grüter C, Farina WM (2009) The honeybee waggle dance: can we follow the steps? Trends Ecol Evol 24:242-247

    PubMed  Google Scholar 

  • Gutz H, Leslie JF (1976) Gene conversion: a hitherto overlooked parameter in population-genetics. Genetics 83:861-866

    PubMed  CAS  Google Scholar 

  • Hamilton WD (1963) The evolution of altruistic behavior. Am Nat 97:354-356

    Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour, I and II. J Theor Biol 7:1-52

    PubMed  CAS  Google Scholar 

  • Hamilton WD (1975) Innate social aptitudes of man: an approach from evolutionary genetics. In: Fox R (ed) Biosocial Anthropology. Malaby, London, pp 133-155

    Google Scholar 

  • Hamilton WD (1996) Narrow Roads of Gene Land. WH Freeman, Oxford

    Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578-581

    Google Scholar 

  • Hammond RL, Keller L (2004) Conflict over male parentage in social insects. PLoS Biol 2:e248, doi:10.1371/journal.pbio.0020248

    Google Scholar 

  • Hansell MH (1984) Animal Architecture and Building Behaviour. Longman, London

    Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243-1248

    CAS  Google Scholar 

  • Hartmann A, Wantia J, Torres JA, Heinze J (2003) Worker policing without genetic conflicts in a clonal ant. Proc Natl Acad Sci USA 100:12836-12840

    PubMed  CAS  Google Scholar 

  • Heinrich B (1993) The Hot-Blooded Insects. Strategies and Mechanisms of Thermoregulation. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Heinsohn RG (2004) Parental care, load-lightening, and costs. In: Koenig WD, Dickinson JL (eds) Ecology and Evolution of Cooperative Breeding in Birds. Cambridge University Press, Cambridge, pp 67-80

    Google Scholar 

  • Heisler IL, Damuth J (1987) A method for analyzing selection in hierarchically structured populations. Am Nat 130:582-602

    Google Scholar 

  • Helenterä H, Sundström L (2007) Worker reproduction in Formica ants. Am Nat 170:E14-E25

    Google Scholar 

  • Helms Cahan S, Blumstein DT, Sundström L, Liebig J, Griffin A (2002) Social trajectories and the evolution of social behaviour. Oikos 96:206-216

    Google Scholar 

  • Herron MD, Michod RE (2008) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436-451

    PubMed  Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA 106:3254-3258

    PubMed  CAS  Google Scholar 

  • Hoekstra RF (1990) Evolution of uniparental inheritance of cytoplasmic DNA. In: Maynard Smith J, Vida G (eds) Organizational Constraints on the Dynamics of Evolution. Manchester University Press, Manchester, pp 269-278

    Google Scholar 

  • Hurst LD, Atlan A, Bengtsson BO (1996) Genetic conflicts. Q Rev Biol 71:317-364

    PubMed  CAS  Google Scholar 

  • Johnstone RA (2000) Models of reproductive skew: a review an synthesis. Ethology 106:5-26

    Google Scholar 

  • Kaib M, Bruinsma O, Leuthold RH (1982) Trail-following in termites: evidence for a multicomponent system. J Chem Ecol 8:1193-1205

    CAS  Google Scholar 

  • Karsai I, Wenzel JW (1998) Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc Natl Acad Sci USA 96:8665-8669

    Google Scholar 

  • Keller L, Ross KG (1998) Selfish genes: a green beard in the red fire ant. Nature 394:573-575

    CAS  Google Scholar 

  • Kirk DL (1998) Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Koenig WD, Dickinson J (2004) Ecology and Evolution of Cooperative Breeding in Birds. Cambridge University Press, Cambridge

    Google Scholar 

  • Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc R Soc Lond B 266:571-578

    Google Scholar 

  • Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212-219

    PubMed  CAS  Google Scholar 

  • Korb J (2005) Regulation of sexual development in termites: mutilation, pheromonal manipulation or honest signal? Naturwissenschaften 92:45-49

    PubMed  CAS  Google Scholar 

  • Korb J (2006) Limited food induces nepotism in drywood termites. Biol Lett 2:364-366

    PubMed  Google Scholar 

  • Korb J (2007) Workers of a drywood termite do not work. Front Zool 4:e7, doi:10.1186/1742-9994-4-7

    Google Scholar 

  • Korb J (2008) The ecology of social evolution in termites. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 151-174

    Google Scholar 

  • Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65-71

    Google Scholar 

  • Korb J, Hartfelder K (2008) Life history and development − a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295-313

    PubMed  Google Scholar 

  • Korb J, Heinze J (2008a) Ecology of Social Evolution. Springer, Heidelberg

    Google Scholar 

  • Korb J, Heinze J (2008b) The ecology of social life: a synthesis. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 245-259

    Google Scholar 

  • Korb J, Katrantzis S (2004) Influence of environmental conditions on the expression of the sexual dispersal phenotype in a lower termite: implications for the evolution of workers in termites. Evol Dev 6:342-352

    PubMed  Google Scholar 

  • Korb J, Linsenmair KE (2000) Ventilation of termite mounds: new results require a new model. Behav Ecol 11:486-494

    Google Scholar 

  • Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63:967-973

    Google Scholar 

  • Lehmann L, Keller L (2006) The evolution of cooperation and altruism − a general framework and a classification of models. J Evol Biol 19:1365-1376

    PubMed  CAS  Google Scholar 

  • Lenz M (1985) Is inter- and intraspecific variability of lower termite neotenic number due to adaptive thresholds for neotenic elimination? − considerations from studies on Porotermes adamsoni (Froggatt) (Isoptera: Termopsidae). In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste Differentaition in Scoial Insects. Pergamon Press, Oxford, pp 125-146

    Google Scholar 

  • Lenz M, McMahan EA, Williams ER (1982) Neotenic production in Cryptotermes brevis (Walker): influence of geographical origin, group composition, and maintenance conditions (Isoptera: Kalotermitidae). Insectes Soc 29:148-163

    Google Scholar 

  • Lenz M, Barrett A, Williams ER (1985) Reproductive strategies in Cryptotermes: neotenic production in indigenous and ‘tramp’ species in Australia (Isoptera: Kalotermitidae). In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Caste Differentiation in Social Insects. Pergamon Press, Oxford, pp 147-164

    Google Scholar 

  • Lewis D (1941) Male sterility in natural populations of hermaphrodite plants: the equilibrium between females and hermaphrodites to be expected with different types of inheritance. New Phytol 40:56-63

    Google Scholar 

  • Liebig J, Peeters C, Hölldobler B (1999) Worker policing limits the number of reproductives in a ponerine ant. Proc R Soc Lond B 266:1865-1870

    Google Scholar 

  • Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vgl Physiol 36:391-432

    Google Scholar 

  • Lüscher M (1961) Air-conditioned termite nests. Sci Am 205:138-145

    Google Scholar 

  • Lyon MF (1991) The genetic basis of transmission-ratio distortion and malesterility due to the tert-complex. Am Nat 137:349-358

    Google Scholar 

  • Margulis L (1981) Symbiosis in Cell Evolution. Freeman and Co, San Fransisco

    Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145-1147

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The Major Transitions in Evolution. WH Freeman, Oxford

    Google Scholar 

  • Mehdiabadi N, Jack CN, Farnham TT, Platt TG, Kalla SE, Shaulsky G, Queller DC, Strassmann J (2006) Kin preference in a social microbe. Nature 442:881-882

    PubMed  CAS  Google Scholar 

  • Michener CD (1964) Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Soc 11:317-342

    Google Scholar 

  • Michener CD, Brothers DJ (1974) Were workers of eusocial hymenoptera initially altruistic or oppressed. Proc Natl Acad Sci USA 71:671-674

    PubMed  CAS  Google Scholar 

  • Michod RE (1999) Individuality, immortality, and sex. In: Keller L (ed) Levels of Selection in Evolution. Princeton University Press, Princeton, pp 53-74

    Google Scholar 

  • Mikheyev AS, Mueller UG, Abbott P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci USA 103:10702-10706

    PubMed  CAS  Google Scholar 

  • Monnin T, Ratnieks FLW (2001) Policing in queenless ponerine ants. Behav Ecol Sociobiol 50:97-108

    Google Scholar 

  • Murgia C, Pritchard J, Kim S, Fassati A, Weiss R (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477-487

    PubMed  CAS  Google Scholar 

  • Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76:953-967

    Google Scholar 

  • Okasha S (2006) Evolution and the Levels of Selection. Oxford University Press, Oxford

    Google Scholar 

  • Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    PubMed  CAS  Google Scholar 

  • Pepper JW, Smuts BB (2002) A mechanism for the evolution of altruism among nonkin: positive assortment through environmental feedback. Am Nat 160:205-213

    PubMed  Google Scholar 

  • Pike N, Foster WA (2008) The ecology of altruism in a clonal insect. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 37-56

    Google Scholar 

  • Pomiankowski A (1999) Intragenomic conflict. In: Keller L (ed) Levels of Selection in Evolution. Princeton University Press, Princeton, pp 121-152

    Google Scholar 

  • Price GR (1970) Selection and covariance. Nature 277:520-521

    Google Scholar 

  • Price GR (1972) Extension of covariance selection mathematics. Annal Hum Genet 35:485-490

    CAS  Google Scholar 

  • Queller DC, Strassmann JE (1998) Kin selection and social insects. BioScience 48:165-175

    Google Scholar 

  • Queller DC, Foster KR, Fortunato A, Strassmann JE (2003) Cooperation and conflict in the social amoeba, Dictyostelium discoideum. In: Kikuchi T, Azuma N, Higashi M (eds) Genes, Behaviors and Evolution of Social Insects. Hokkaido University Press, Sapporo, Japan, pp 173-200

    Google Scholar 

  • Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217-236

    Google Scholar 

  • Ratnieks FLW (1993) Egg-laying, egg-removal, and ovary development by workers in queenright honey-bee colonies. Behav Ecol Sociobiol 32:191-198

    Google Scholar 

  • Ratnieks FLW (2001) Heirs and spares: caste conflict and excess queen production in Melipona bees. Behav Ecol Sociobiol 50:467-473

    Google Scholar 

  • Ratnieks FLW, Visscher PK (1989) Worker policing in the honeybee. Nature 342:796-797

    Google Scholar 

  • Ratnieks FLW, Wenseleers T (2008) Altruism in insect societies and beyond: voluntary or enforced? Trends Ecol Evol 23:45-52

    PubMed  Google Scholar 

  • Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581-608

    PubMed  CAS  Google Scholar 

  • Reeve HK (1998) Game theory, reproductive skew, and nepotism. In: Dugatkin LA, Reeve HK (eds) Game Theory and Animal Behaviour. Oxford University Press, Oxford, pp 118-145

    Google Scholar 

  • Reeve HK, Keller L (1999) Levels of selection: burying the units-of-selection debate and unearthing the crucial new issues. In: Keller L (ed) Levels of Selection in Evolution. Princeton University Press, Princeton, pp 3-14

    Google Scholar 

  • Reeve HK, Peters JM, Nonacs P, Starks PT (1998) Dispersal of first ‘workers’ in social wasps: causes and implications of an alternative reproductive strategy. Proc Natl Acad Sci USA 95:13737-13742

    PubMed  CAS  Google Scholar 

  • Reyer H-U (1984) Investment and relatedness: a cost/benefit analysis of breeding and helping in the pied kingfisher (Ceryle rudis). Anim Behav 32:1163-1178

    Google Scholar 

  • Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143:751-765

    Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: Evolution, Sociality, Symbiose, Ecology. Kluwer Academic Publishers, Dordrecht/NL, pp 95-119

    Google Scholar 

  • Roux EA, Roux M, Korb J (2009) Selection on defensive traits in a sterile caste − caste evolution: a mechanism to overcome life-history trade-offs? Evol Dev 11:80-87

    PubMed  Google Scholar 

  • Saigo T, Tsuchida K (2004) Queen and worker policing in monogynous and monandrous colonies of a primitively eusocial wasp. Proc R Soc Lond B 271:S509-S512

    Google Scholar 

  • Seger J (1991) Cooperation and conflict in social insects. In: Krebs JR, Davies NB (eds) Behavioural Ecology. An Evolutionary Approach. Blackwell, Cambridge/MA, pp 338-373

    Google Scholar 

  • Sherman PW, Lacey EA, Reeve HK, Keller L (1995) The eusociality continuum. Behav Ecol 6:102-108

    Google Scholar 

  • Simmons LW, Emlen DJ (2006) Evolutionary trade-off between weapons and testes. Proc Natl Acad Sci USA 103:16346-16351

    PubMed  CAS  Google Scholar 

  • Sober E, Wilson DS (1997) Unto Others: The Evolution of Altruism. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Strohm E, Liebig J (2008) Why are so many bees but so few digger wasps social? The effect of provisionning mode and helper efficiency on the distribution of sociality among the Apoidea. In: Korb J, Heinze J (eds) Ecology of Social Evolution. Springer, Heidelberg, pp 109-128

    Google Scholar 

  • Stubblefield JW, Charnov EL (1986) Some conceptual issues in the origin of eusociality. Heredity 57:181-187

    PubMed  Google Scholar 

  • Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans R Soc Lond USA 361:1761-1776

    Google Scholar 

  • Temin RG, Ganetzky B, Powers PA, Lyttle TW, Pimpinelli S, Dimitri P, Wu C-I, Hiraizumi Y (1991) Segregation distortion in Drosophila melanogaster: genetic and molecular analyses. Am Nat 137:287-331

    Google Scholar 

  • Tsuji K (1995) Reproductive conflicts and levels of selection in the ant Pristomyrmex pungens: contextual analysis and partitioning of covariance. Am Nat 146:586-607

    Google Scholar 

  • Turner JS (2000) The Extended Organism: The Physiology of Animal-Built Structures. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Turner BC, Perkins DD (1991) Meiotic drive in Neurospora and other fungi. Am Nat 137:416-429

    Google Scholar 

  • van der Gaag M, Debets AJM, Oosterhof J, Slakhorst M, Thijssen JAGM, Hoekstra RF (2000) Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina. Genetics 156:593-605

    PubMed  Google Scholar 

  • von Frisch K (1946) Die Tänze der Bienen. Österr Zool Z 1:1-48

    Google Scholar 

  • von Frisch K (1967) The Dance Language and Orientation of Bees. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Wade MJ (1978) Kin selection: a classical approach and a general solution. Proc Natl Acad Sci USA 75:6154-6158

    PubMed  CAS  Google Scholar 

  • Wenseleers T, Ratnieks FLW (2004) Tragedy of the commons in Melipona bees. Proc R Soc Lond B 271:S310-S312

    Google Scholar 

  • Wenseleers T, Ratnieks FLW (2006) Enforced altruism in insect societies. Nature 444:50

    PubMed  CAS  Google Scholar 

  • Wenseleers T, Ratnieks FLW, Billen J (2003) Caste fate conflict in swarmfounding social Hymenoptera: an inclusive fitness analysis. J Evol Biol 16:647-658

    PubMed  CAS  Google Scholar 

  • Wenseleers T, Hart AG, Ratnieks FLW (2004a) When resistance is useless: policing and the evolution of reproductive acquiescence in insect societies. Am Nat 164:E154-E167

    Google Scholar 

  • Wenseleers T, Hart AG, Ratnieks FLW, Quezada-Euan JJG (2004b) Queen execution and caste conflict in the stingless bee Melipona beecheii. Ethology 110:725-736

    Google Scholar 

  • Wenseleers T, Helanterä H, Hart A, Ratnieks FLW (2004c) Worker reproduction and policing in insect societies: an ESS analysis. J Evol Biol 17:1035-1047

    CAS  Google Scholar 

  • Wenseleers T, Gardner A, Foster KR (in press) Social evolution theory: a review of methods and approaches. In: Székely T, Komdeur J, Moore AJ (eds) Social Behaviour: Genes, Ecology and Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wenzel J (1991) Evolution of nest architecture. In: Ross KG, Matthews RW (eds) The Social Biology of Wasps. Cornell University Press, Cornell, Ithaka, pp 480-519

    Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 20:415-432

    PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Q Rev Biol 50:1-33

    Google Scholar 

  • Wey T, Blumstein DT, Shen W, Jordán F (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75:333-344

    Google Scholar 

  • Williams GC (1966) Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thoughts. Princeton University Press, Princeton

    Google Scholar 

  • Wilson EO (1971) The Insect Societies. Harvard University Press, Cambridge/MA

    Google Scholar 

  • Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:143-146

    PubMed  CAS  Google Scholar 

  • Wilson DS (1997) Altruism and organism: disentangling the themes of multilevel selection theory. Am Nat 150:S122-134

    PubMed  Google Scholar 

  • Wilson DS (2008) Social semantics: toward a genuine pluralism in the study of social behaviour. J Evol Biol 21:368-373

    PubMed  CAS  Google Scholar 

  • Wilson DS, Dugatkin LA (1997) Group selection and assortative interactions. Am Nat 149:336-351

    Google Scholar 

  • Wilson EO, Hölldobler B (2005) Eusociality: origin and consequences. Proc Natl Acad Sci USA 102:13367-13371

    PubMed  CAS  Google Scholar 

  • Wynne-Edwards VC (1962) Animal Dispersion in Relation to Social Behavior. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Yang R-C (1998) Estimating hierarchical F-statistics. Evolution 52:950-956

    Google Scholar 

  • Zimmerman RB (1983) Sibling manipulation and indirect fitness in termites. Behav Ecol Sociobiol 12:143-145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korb, J. (2010). Social insects, major evolutionary transitions and multilevel selection. In: Kappeler, P. (eds) Animal Behaviour: Evolution and Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02624-9_7

Download citation

Publish with us

Policies and ethics