Spreadsheet Interaction with Frames: Exploring a Mathematical Practice

  • Andrea Kohlhase
  • Michael Kohlhase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5625)


Since Mathematics really is about what mathematicians do, in this paper, we will look at the mathematical practice of framing, in which an object of interest is viewed in terms of well-understood mathematical structures. The new perspective not only allows to deepen the understanding of a resp. object, it also facilitates new insights. We propose a model for framing in the context of theory graphs, and show how framing can be exploited to enhance the interaction with MKM systems. We use the framing extension of our SACHS system — a semantic help system for MS Excel — as a concrete example.


Domain Ontology Functional Block Mathematical Practice Proof Obligation Target Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BC00]
    Barendregt, H., Cohen, A.M.: Representing and handling mathematical concepts by humans and machines. In: ISSAC 2000: Proceedings of the 2000 international symposium on Symbolic and algebraic computation. ACM, New York (2000)Google Scholar
  2. [BF06]
    Borwein, J.M., Farmer, W.M. (eds.): MKM 2006. LNCS (LNAI), vol. 4108. Springer, Heidelberg (2006)Google Scholar
  3. [CCB06]
    Cohen, A.M., Cuypers, H., Barreiro, E.R.: Mathdox: Mathematical documents on the web. In: OMDoc – An open markup format for mathematical documents [Version 1.2] [Koh06], ch. 26.7, pp. 278–282Google Scholar
  4. [Far00]
    Farmer, W.: An infrastructure for intertheory reasoning. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 115–131. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. [FGT92]
    Farmer, W., Guttman, J., Thayer, X.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 467–581. Springer, Heidelberg (1992)Google Scholar
  6. [Hol95]
    Holzkamp, K.: Lernen: Subjektwissenschaftliche Grundlegung. Campus Verlag (1995)Google Scholar
  7. [KK06]
    Kohlhase, A., Kohlhase, M.: Communities of Practice in MKM: An Extensional Model. In: Borwein, Farmer (eds.) [BF06], pp. 179–193Google Scholar
  8. [KK08a]
    Kohlhase, A., Kohlhase, M.: Compensating the Computational Bias of Spreadsheets with MKM Techniques. In: Carette, J., Dixon, L., Sacerdoti Coen, C., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 357–372. Springer, Heidelberg (2009)Google Scholar
  9. [KK08b]
    Kohlhase, A., Kohlhase, M.: Semantic knowledge management for education. Proceedings of the IEEE, Special Issue on Educational Technology 96(6), 970–989 (2008)zbMATHGoogle Scholar
  10. [KMM07]
    Kohlhase, M., Mahnke, A., Müller, C.: Managing Variants in Document Content and Narrative Structures. In: Hinneburg, A. (ed.) Wissens- und Erfahrungsmanagement LWA (Lernen, Wissensentdeckung und Adaptivität) conference proceedings, pp. 324–229. Martin-Luther-University Halle-Wittenberg (2007)Google Scholar
  11. [Koh06]
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. [KP06]
    Kerber, M., Pollet, M.: A tough nut for mathematical knowledge management. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. [KWZ08]
    Kamareddine, F., Wells, J.B., Zenglere, C.: Computerizing mathematical text with mathlang. Electron. Notes Theor. Comput. Sci. 205, 5–30 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [MAH01]
    Mossakowski, T., Autexier, S., Hutter, D.: Extending development graphs with hiding. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 269–284. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. [RK08]
    Rabe, F., Kohlhase, M.: An exchange format for modular knowledge. In: Rudnicki, P., Sutcliffe, G. (eds.) Knowledge Exchange: Automated Provers and Proof Assistants (KEAPPA) (November 2008)Google Scholar
  16. [RK09]
    Rabe, F., Kohlhase, M.: A web-scalable module system for mathematical theories. The Journal of Symbolic Computation (manuscript, to be submitted) (2009)Google Scholar
  17. [Sch09]
    Charles, F.: Schmidt. Productive thinking...the gestalt emphasis (2009),
  18. [SRWB86]
    Snow, D.A., Rochford, E.B., Worden, S.K., Benford, R.D.: Frame alignment processes, micromobilization, and movement participation. American Sociological Review 51(4), 464–481 (1986)CrossRefGoogle Scholar
  19. [Win01]
    Windsteiger, W.: On a solution of the mutilated checkerboard problem using the theorema set theory prover. In: Linton, S., Sebastiani, R. (eds.) Proceedings of the Calculemus 2001 Symposium, Siena, Italy, pp. 28–47 (2001)Google Scholar
  20. [Win06]
    Winograd, T.: The spreadsheet. In: Winograd, T., Bennett, J., de Young, L., Hartfield, B. (eds.) Bringing Design to Software, 1996, pp. 228–231. Addison-Wesley, Reading (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrea Kohlhase
    • 1
  • Michael Kohlhase
    • 2
  1. 1.German Center for Artificial Intelligence (DFKI)Germany
  2. 2.Computer ScienceJacobs University BremenGermany

Personalised recommendations