Math-Literate Computers

  • Dorothea Blostein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5625)


Math notation is a familiar, everyday tool widely used in society. Computers need math literacy – the ability to read and write math notation – in order to assist people with accessing mathematical documents and carrying out mathematical investigations. In this paper, we discuss issues in making computers math-literate. Software for generating math notation is widely used. Software for recognition of math notation is not as widely used: to avoid the intrusiveness and unpredictability of recognition errors, people often prefer to enter and edit math expressions using a computer-oriented representation, such as LaTeX or a structure-based editor. However, computer recognition of math notation is essential in large-scale recognition of mathematical documents; as well, it offers the ability to create people-centric user interfaces focused on math notation rather than computer-centric user interfaces focused on computer-oriented representations. Issues that arise in computer math literacy include the diversity of math notation, the challenges in designing effective user interfaces, and the difficulty of defining and assessing performance.


Optical Character Recognition Notational Convention Math Notation Music Notation Diagram Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blostein, D.: Structural Analysis of Music Notation. In: Proc. IAPR Workshop on Syntactic and Structural Pattern Recognition, Murray Hill, NJ, p. 481 (1990)Google Scholar
  2. 2.
    Blostein, D., Haken, L.: Justification of Printed Music. Communications of the ACM 34(3), 88–99 (1991)CrossRefGoogle Scholar
  3. 3.
    Blostein, D., Haken, L.: The Lime Music Editor: A Diagram Editor Involving Complex Translations. Software – Practice and Experience 24(3), 289–306 (1994)CrossRefGoogle Scholar
  4. 4.
    Blostein, D.: General Diagram-Recognition Methodologies. In: Kasturi, R., Tombre, K. (eds.) Graphics Recognition 1995. LNCS, vol. 1072, pp. 106–122. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Blostein, D., Grbavec, A.: Recognition of Mathematical Notation. In: Bunke, H., Wang, P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 557–582. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  6. 6.
    Blostein, D., Haken, L.: Using Diagram Generation Software to Improve Diagram Recognition: A Case Study of Music Notation. IEEE Trans. Pattern Analysis and Machine Intelligence 21(11), 1121–1136 (1999)CrossRefGoogle Scholar
  7. 7.
    Blostein, D., Cordy, J., Zanibbi, R.: Applying Compiler Techniques to Diagram Recognition. In: Proc. 16th Intl. Conf. on Pattern Recognition, Quebec City, Canada, August 2002, vol. III, pp. 123–126 (2002)Google Scholar
  8. 8.
    Blostein, D., Lank, E., Rose, A., Zanibbi, R.: User Interfaces for Online Diagram Recognition. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 92–103. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Blostein, D., Zanibbi, R., Nagy, G., Harrap, H.: Document Representations. In: Proc. Fifth IAPR Int’l Workshop on Graphics Recognition (GREC 2003), Barcelona, Spain, July 2003, pp. 3–12 (2003)Google Scholar
  10. 10.
    Blostein, D.: Graph Transformation in Document Image Analysis: Approaches and Challenges. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 23–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Chan, K., Yeung, D.: Mathematics Expression Recognition: a Survey. Int’l Journal on Document Analysis and Recognition 3(1), 3–15 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chaundy, T., Barrett, P., Batey, C.: The Printing of Mathematics. Oxford University Press, Oxford (1957)zbMATHGoogle Scholar
  13. 13.
    Chhabra, A.: Graphic Symbol Recognition: An Overview. In: Chhabra, A.K., Tombre, K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 68–79. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Cushman, W., Ojha, P., Daniels, C.: Usable OCR: What are the Minimum Performance Requirements? In: Proc. ACM SIGCHI 1990 Conference on Human Factors in Computing Systems, Seattle, Washington, April 1990, pp. 145–151 (1990)Google Scholar
  15. 15.
    Document Recognition Contests,
  16. 16.
    Gross, M., Do, E.: Ambiguous Intentions: a Paper-like Interface for Creative Design. In: Proc. Ninth Annual Symposium on User Interface Software and Technology (UIST 1996), Seattle, Washington, November 1996, pp. 183–192 (1996)Google Scholar
  17. 17.
    Haken, L., Blostein, D.: A New Algorithm for Horizontal Spacing of Printed Music. In: International Computer Music Conference, Banff, September 1995, pp. 118–119 (1995)Google Scholar
  18. 18.
    Higham, N.: Handbook of Writing for the Mathematical Sciences. SIAM, Philadelphia (1993)zbMATHGoogle Scholar
  19. 19.
    Hsu, R., Mitchell, W.: After 400 Years, Print is Still Superior. CACM 40(10), 27–28 (1997)CrossRefGoogle Scholar
  20. 20.
    Int’l Journal on Document Analysis and Recognition. Springer Verlag (since 1998)Google Scholar
  21. 21.
    (Int’l Conf.) Computer Vision/ Computer Graphics Collaboration Techniques and Applications, INRIA Rocquencourt, France, May 4-6 (2009)Google Scholar
  22. 22.
    Knuth, D.: Mathematical Typography. Bulletin of the American Mathematical Society 1(2), 337–372 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Knuth, D., Plass, M.: Breaking Paragraphs into Lines. Software – Practice and Experience 11, 1119–1184 (1981)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lapointe, A., Blostein, D.: Issues in Performance Evaluation: A Case Study of Math Recognition. In: Int’l Conf. Document Analysis and Recognition (ICDAR 2009), Barcelona (July 2009) (to appear)Google Scholar
  25. 25.
    Martin, W.: Computer Input/Output of Mathematical Expressions. In: Proc. 2nd Symposium on Symbolic and Algebraic Manipulations, pp. 78–87. ACM, New York (1971)CrossRefGoogle Scholar
  26. 26.
    Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993)zbMATHGoogle Scholar
  27. 27.
    Nielsen, J., Levy, J.: Measuring Usability: Preference vs. Performance. Communications of the ACM 37(4), 66–75 (1994)CrossRefGoogle Scholar
  28. 28.
    Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Communications of the ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  29. 29.
    Proc. ACM Conference on Human Factors in Computing Systems (CHI). ACM Press, New York (annual since 1982)Google Scholar
  30. 30.
    Proc. ACM Symposium on User Interface Software and Technology (UIST). ACM Press, New York (annual since 1988)Google Scholar
  31. 31.
    Proc. IAPR Int’l Workshop on Document Analysis Systems (biennial since 1994)Google Scholar
  32. 32.
    Proc. IAPR Int’l Workshop on Graphics Recognition (biennial since 1995)Google Scholar
  33. 33.
    Proc. IEEE Symposium on Visual Languages and Human-Centric Computing (annual since 1988) (earlier name: Proc. IEEE Symposium on Visual Languages)Google Scholar
  34. 34.
    Proc. Int’l Conf. on Document Analysis and Recognition (biennial since 1991) (sponsored by IAPR and IEEE)Google Scholar
  35. 35.
    Proc. Int’l Conf. on the Theory and Application of Diagrams (biennial since 2000)Google Scholar
  36. 36.
    Proc. Int’l Symposium on Graph Drawing (held annually since 1993)Google Scholar
  37. 37.
    Tombre, K., Tabbone, S., Dosch, P.: Musings on Symbol Recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 23–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Vaxivière, P., Tombre, K.: Knowledge Organization and Interpretation Process in Engineering Drawing Interpretation. In: Proc. IAPR Workshop on Document Analysis Systems, Kaiserslautern, Germany, October 1994, pp. 313–321 (1994)Google Scholar
  39. 39.
    Wang, Z., Faure, C.: Structural Analysis of Handwritten Mathematical Expressions. In: Proc. Ninth Int’l Conf. on Pattern Recognition, Rome, Italy, November 1988, pp. 32–34 (1988)Google Scholar
  40. 40.
    Wick, K.: Rules for Typesetting Mathematics, translated by V. Boublik and M. Hejlova, The Hague, Mouton (1965)Google Scholar
  41. 41.
    Workshop on Document Layout Interpretation and its Applications (DLIA) (1999 and 2001)Google Scholar
  42. 42.
    Zanibbi, R., Blostein, D., Cordy, J.: Recognizing Handwritten Mathematical Expressions Using Tree Transformation. IEEE Trans. Pattern Analysis and Machine Intelligence 24(11), 1455–1467 (2002)CrossRefGoogle Scholar
  43. 43.
    Zanibbi, R., Novins, K., Arvo, J., Zanibbi, K.: Aiding Manipulation of Handwritten Mathematical Expressions through Style-Preserving Morphs. In: Proc. Graphics Interface 2001, Ottawa, Ontario, June 2001, pp. 127–134 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dorothea Blostein
    • 1
  1. 1.School of ComputingQueen’s University, KingstonOntarioCanada

Personalised recommendations