Advertisement

Exploring a Quantum Theory with Graph Rewriting and Computer Algebra

  • Aleks Kissinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5625)

Abstract

It can be useful to consider complex matrix expressions as circuits, interpreting matrices as parts of a circuit and composition as the “wiring,” or flow of information. This is especially true when describing quantum computation, where graphical languages can vastly reduce the complexity of many calculations [3,9]. However, manual manipulation of graphs describing such systems quickly becomes untenable for large graphs or large numbers of graphs. To combat this issue, we are developing a tool called Quantomatic, which allows automated and semi-automated explorations of graph rewrite systems and their underlying semantics. We emphasise in this paper the features of Quantomatic that interact with a computer algebra system to discover graphical relationships via the unification of matrix equations. Since these equations can grow exponentially with the size of the graph, we use this method to discover small identities and use those identities as graph rewrites to expand the theory.

Keywords

Entangle State Classical Structure Computer Algebra Computer Algebra System Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings from LiCS (Feburary 2004) arXiv:quant-ph/0402130v5Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. (January 1993)Google Scholar
  3. 3.
    Coecke, B.: Kindergarten quantum mechanics (2005) arXiv:quant-ph/0510032v1Google Scholar
  4. 4.
    Coecke, B.: Introducing categories to the practicing physicist. Advanced Studies in Mathematics and Logic 30, 45–74 (2006) arXiv:0808.1032v1 [quant-ph]zbMATHGoogle Scholar
  5. 5.
    Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Coecke, B., Edwards, B.: Three qubit entanglement analysed with graphical calculus. Technical Report PRG-RR-09-03, Oxford University Computing Laboratory (2009)Google Scholar
  7. 7.
    Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. Semantic Techniques for Quantum Computation, p. 43 (October 2008)Google Scholar
  8. 8.
    Coecke, B., Paquette, E.O., Perdrix, S.: Bases in diagrammatic quantum protocols (August 2008) arXiv:0808.1029v1 [quant-ph]Google Scholar
  9. 9.
    Dixon, L., Duncan, R.: Extending graphical representations for compact closed categories with applications to symbolic quantum computation. AISC/MKM/Calculemus, pp. 77–92 (June 2008)Google Scholar
  10. 10.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6) (November 2000)Google Scholar
  11. 11.
    Hannabuss, K.: An Introduction to Quantum Theory. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  12. 12.
    Joyal, A., Street, R.: The geometry of tensor calculus I. Advances in Mathematics 88, 55–113 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kelly, M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kissinger, A.: Graph rewrite systems for classical structures in dagger-symmetric monoidal categories. Master’s thesis, Oxford University (Feburary 2008)Google Scholar
  15. 15.
    Lack, S.: Composing props. Theory and Applications of Categories 13(9), 147–163 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Von Neumann, J., Beyer, R.T.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1996)Google Scholar
  17. 17.
    O’Madadhain, J., Fisher, D., Nelson, T.: JUNG: Java universal network/graph framework, http://jung.sourceforge.net
  18. 18.
    Paquette, E.O.: Categorical quantum computation. PhD thesis, Université de Montréal (Feburary 2008)Google Scholar
  19. 19.
    Wolfram Research. Mathematica (2007)Google Scholar
  20. 20.
    Selinger, P.: Dagger compact closed categories and completely positive maps (extended abstract). Electronic Notes in Theoretical Computer Science 170, 139–163 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Selinger, P.: A survey of graphical languages for monoidal categories (2009), http://www.mscs.dal.ca/~selinger/papers.html
  22. 22.
    Vicary, J.: A categorical framework for the quantum harmonic oscillator (Jun 2007), arXiv:0706.0711v2 [quant-ph]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aleks Kissinger
    • 1
  1. 1.Oxford University Computing LaboratoryUK

Personalised recommendations