Skip to main content

Memory Efficient Vision Based Line Feature Extraction for Tiny Mobile Robots

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5627)

Abstract

This paper presents implementation of a memory efficient all integer line feature extraction algorithm for tiny autonomous mobile robot with limited on-chip memory. A circular buffer is used to bring image data from off chip to the on chip memory of the DSP for detecting edges. Afterwards a gradient based Hough transform is used to group collinear pixels which are processed to detect end points and length of the line segments. Approximation of the two dimensional Hough parameter space using a one dimensional array is discussed. Experimental results illustrate the performance of these features extraction on real and synthetic images.

Keywords

  • Line Segment
  • Mobile Robot
  • Peak Detection
  • Digital Signal Processor
  • Synthetic Image

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox, D., Burgard, W., Thrun, S., Cremers, A.: Position estimation for mobile robots in dynamic environments. In: Proceedings of the National Conference on Artificial Intelligence, pp. 983–988 (1998)

    Google Scholar 

  2. Cox, I.J.: Blanche — an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–204 (1991)

    CrossRef  MathSciNet  Google Scholar 

  3. Leonard, J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation 7(3), 376–382 (1991)

    CrossRef  Google Scholar 

  4. Borenstein, J.: Experimental results from internal odometry error correction with the omnimate mobile robot. IEEE Transactions on Robotics and Automation 14(6), 963–969 (1998)

    CrossRef  Google Scholar 

  5. Dao, N., You, B.J., Oh, S.R., Choi, Y.: Simple visual self-localization for indoor mobile robots using single video camera. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2004, vol. 4, pp. 3767–3772 (2004)

    Google Scholar 

  6. Bais, A., Sablatnig, R., Novak, G.: Line-based landmark recognition for self-localization of soccer robots. In: Proceedings of the IEEE International Conference on Emerging Technologies, Islamabad, Pakistan, September 2005, pp. 132–137 (2005)

    Google Scholar 

  7. Guru, D.S., Shekar, B.H., Nagabhushan, P.: A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognition Letters 25(1), 1–13 (2004)

    CrossRef  Google Scholar 

  8. Climer, S., Bhatia, S.K.: Local lines: A linear time line detector. Pattern Recognition Letters 24, 2291–2300 (2003)

    CrossRef  MATH  Google Scholar 

  9. Kälviäinen, H., Hirvonen, P.: An extension to the randomized hough transform exploiting connectivity. Pattern Recognition Letters 18(1), 77–85 (1997)

    CrossRef  Google Scholar 

  10. Kiryati, N., Eldar, Y., Bruckstein, A.: A probabilistic hough transform. Pattern Recognition 24(4), 303–316 (1991)

    CrossRef  MathSciNet  Google Scholar 

  11. Leavers, V.F.: Survey - which hough transform? Computer Vision, Graphics, and Image Processing 58, 250–264 (1993)

    CrossRef  Google Scholar 

  12. Kälviäinen, H., Hirvonen, P., Xu, L., Oja, E.: Probabilistic and non-probabilistic hough transforms: Overview and comparisons. Image and Vision Computing 13(4), 239–252 (1995)

    CrossRef  Google Scholar 

  13. Gan, W.S., Kuo, S.M.: Embedded Signal Processing with the Micro Signal Architecture. John Wiley and Sons, Chichester (2007)

    CrossRef  Google Scholar 

  14. Bader, M.: Feature-based real-time stereo vision on a dual core dsp with an object detection algorithm. Master’s thesis, Pattern Recongnition and Impage Processing Group, Institute of Computer Aided Automation, Vienna University of Technology, Vienna, Austria (March 2007)

    Google Scholar 

  15. Duda, R., Hart, P.: Use of the Hough transformation to detect lines and curves in the pictures. Communications of the ACM 15(1), 11–15 (1972)

    CrossRef  MATH  Google Scholar 

  16. Singleton, R.C.: A method for computing the fast fourier transform with auxiliary memory and limited high-speed storage. IEEE Transactions on Audio and Electroacoustics (15), 91–98 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bais, A., Khan, M.U.K., Yahya, K.M., Sablatnig, R., Hassan, G.M. (2009). Memory Efficient Vision Based Line Feature Extraction for Tiny Mobile Robots. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)