Exploring Nanostructured Systems with Single-Molecule Probes: From Nanoporous Materials to Living Cells

Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 96)


Molecular movement in confined spaces is of broad scientific and technological importance in areas ranging from molecular sieving and membrane separation to active transport along intracellular networks. Whereas measurements of ensemble diffusion provide information about the overall behavior of the guests in a nanoporous host, tracking of individual molecules provides insight into both the heterogeneity and the mechanistic details of the molecular diffusion, as well as into the structure of the host.

We first show how single dye molecules can be used as nanoscale probes to map the structure of nanoporous silica channel systems. These channel systems are prepared as thin films via cooperative self-assembly of surfactant molecules with polymerizable silicate species. In order to correlate the porous structure of the host with the diffusion dynamics of single molecules, we present a unique combination of transmission electron microscopic (TEM) mapping and optical single-molecule tracking experiments (SMT). With this approach, we can uncover how a single luminescent dye molecule travels through various defect structures in a thin film of nanoporous silica, how it varies its mobility in the channel structure, and how it bounces off a domain boundary having a different channel orientation. Additional polarization-dependent studies reveal simultaneous orientational and translational movements. In single-molecule measurements with very high positioning accuracy, we show how lateral motions between leaky channels allow a molecule to cross through defect structures into the neighboring channels and how the adsorption of single molecules at the walls of the nanoporous host can be observed as trapping events. Furthermore, a mechanism to switch on and off the diffusion of the guest molecules was discovered. These experiments reveal unprecedented details of the guest–host interactions and of the host’s structure, its domains, defects, and the accessibility as well as the connectivity of the nanostructured channel systems. The knowledge of these details and the use of mesoporous nanoparticles with functionalized pore walls will finally lead to novel drug delivery systems. Another type of drug delivery systems is synthetic viruses. Live cell experiments have been performed and the targeting and uptake of DNA-polyplexes as synthetic viruses were investigated. Single-molecule techniques can be used to improve the efficiencies of such synthetic viruses in novel gene therapy applications.


  1. 1.
    J. Kirstein, B. Platschek, C. Jung, R. Brown, T. Bein, C. Bräuchle, Nat. Mat. 6, 303–310 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Zürner, J. Kirstein, M. Döblinger, C. Bräuchle ∗ , T. Bein ∗ , Nature 450, 705–708 (2007)Google Scholar
  3. 3.
    C. Jung, C. Hellriegel, B. Platschek, D. Wöhrle, T. Bein, J. Michaelis, C. Bräuchle, J. Am. Chem. Soc. 129, 5570–5579 (2007)CrossRefGoogle Scholar
  4. 4.
    C. Jung, J. Kirstein, B. Platschek, T. Bein, M. Budde, I. Frank, K. Müllen, J. Michaelis, C. Bräuchle, J. Am. Chem. Soc. 130, 1638–1648 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Jung, C. Hellriegel, J. Michaelis, C. Bräuchle, Adv. Mater. 19, 956–960 (2007)CrossRefGoogle Scholar
  6. 6.
    D.E. De Vos, M. Dams, B.F. Sels, P.A. Jacobs, Chem. Rev. 102, 3615–3640 (2002)CrossRefGoogle Scholar
  7. 7.
    V. Rebbin, R. Schmidt, M. Fröba, Angew. Chem. Int. Edn. Engl. 45, 5210–5214 (2006)CrossRefGoogle Scholar
  8. 8.
    D.J. Cott et al., J. Am. Chem. Soc. 128, 3920–3921 (2006)CrossRefGoogle Scholar
  9. 9.
    B. Ye, M.L. Trudeau, D.M. Antonelli, Adv. Mater. 13, 561–565 (2001)CrossRefGoogle Scholar
  10. 10.
    N. Petkov, N. Stock, T. Bein, J. Phys. Chem. B. 109, 10737–10743 (2005)CrossRefGoogle Scholar
  11. 11.
    I. Braun, G. Ihlein, F. Laeri, J.U. Nockel, G. Schulz-Ekloff, F. Schuth, U. Vietze, O. Weiss, D. Wohrle, Appl. Phys. B: Lasers Opt. 70, 335–343 (2000)CrossRefADSGoogle Scholar
  12. 12.
    C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11, 579–585 (1999)CrossRefGoogle Scholar
  13. 13.
    I. Roy et al., Proc. Natl. Acad. Sci. U S A. 102, 279–284 (2005)CrossRefADSGoogle Scholar
  14. 14.
    O. Terasaki, T. Ohsuna, in Handbook of Zeolite Science and Technology, ed. by S.M. Auerbach, K.A. Carrado, P.K. Dutta 291–315 (Dekker, New York, 2003)Google Scholar
  15. 15.
    V. Kukla et al., Science 272, 702–704 (1996)CrossRefADSGoogle Scholar
  16. 16.
    N.E. Benes, H. Jobic, H. Verweij, Micropor. Mesopor. Mater. 43, 147–152 (2001)CrossRefGoogle Scholar
  17. 17.
    Y. Sakamoto et al., Nature 408, 449–453 (2000)CrossRefADSGoogle Scholar
  18. 18.
    C. Jung et al., J. Am. Chem. Soc. 128, 5283–5291 (2006)CrossRefGoogle Scholar
  19. 19.
    W.S. Han, Y. Kang, S.J. Lee, H. Lee, Y. Do, Y.A. Lee, J.H. Jung, J. Phys. Chem. 109, 20661–20664 (2005)Google Scholar
  20. 20.
    T. Lebold, L.A. Mühlstein, J. Blechinger, M. Riederer, H. Amenitsch, R. Köhn, K. Peneva, K. Müllen, J. Michaelis, C. Bräuchle, T. Bein, Chem. Eur. J. (2008), Submitted for publicationGoogle Scholar
  21. 21.
    S.M. Sullivan, in Pharmaceutical Gene Delivery Systems, ed. by A. Rolland (Dekker, New York, 2003), pp. 1–16Google Scholar
  22. 22.
    T.G. Park, J.H. Jeong, S.W. Kim, Adv Drug Deliv Rev. 58, 467–486 (2006)CrossRefGoogle Scholar
  23. 23.
    D. Schaffert, E. Wagner, Gene Ther. 1–8 (2008)Google Scholar
  24. 24.
    T.R. Flotte, J. Cell Physiol. 213, 301–305 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Waehler, S.J. Russell, D.T. Curiel, Nat. Rev. Genet.. 8, 573–587 (2007)CrossRefGoogle Scholar
  26. 26.
    I. Kopatz, J.S. Remy, J.P. Behr, J. Gene Med. 6, 769–776 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Rejman, A. Bragonzi, M. Conese, Mol. Ther. 12, 468–474 (2005)CrossRefGoogle Scholar
  28. 28.
    R. Bausinger, K. von Gersdorff, K. Braeckmans, M. Ogris, E. Wagner, C. Brauchle et al., Angew. Chem. Int. Ed. Engl. 45, 1568–1572 (2006)CrossRefGoogle Scholar
  29. 29.
    K. de Bruin, N. Ruthardt, K. von Gersdorff, R. Bausinger, E. Wagner, M. Ogris, C. Bräuchle, Mol. Ther. 15, 1297–1305 (2007)CrossRefGoogle Scholar
  30. 30.
    Y.W. Cho, J.D. Kim, K. Park, J. Pharm. Pharmacol. 55(6), 721–734 (2003)CrossRefGoogle Scholar
  31. 31.
    K. de Bruin, C. Fella, M. Ogris, E. Wagner, N. Ruthardt, C. Bräuchle, J. Control. Release (2008). doi:10.1016/j.jconrel.2008.06.001Google Scholar
  32. 32.
    G. Seisenberger, M.U. Ried, T. Endreß, H. Büning, M. Hallek, C. Bräuchle, Science 294, 1929–1932 (2001)CrossRefADSGoogle Scholar
  33. 33.
    M. Lakadamyali, M.J. Rust, H.P. Babcock, X. Zhuang, Proc. Natl. Acad. Sci. USA. 100, 9280–9285 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry und Biochemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations