Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 96))

Summary

Since the discovery of the diffraction barrier in the nineteenth century, it has been commonly accepted that a lens-based (far-field) optical microscope cannot discern structural details much finer than about half the wavelength of light (λ ∕ 2). However, in the early 1990s, a quest toward higher resolution began, which led to the discovery that the diffraction barrier of far-field fluorescence microscopy can be radically overcome using basic molecular transitions. This chapter discusses the initial and more recent concepts that can provide far-field optical resolution down to the molecular scale. It is shown that all concepts reported to date exploit a transition between a bright and a dark state to switch fluorescence such that adjacent objects or molecules emit sequentially in time. Some of these concepts can be extended to signal-giving mechanisms other than fluorescence. Likewise, purely physics-based concepts, such as stimulated emission depletion (STED) microscopy, can in principle be extended to explore the molecule itself. Emergent far-field fluorescence nanoscopy will strongly impact not only the life sciences but also other areas that benefit from nanoscale optical three-dimensional (3D) mapping with conventional lenses and propagating light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikr. Anat. 9, 413–468 (1873)

    Google Scholar 

  2. B. Alberts et al., Molecular Biology of the Cell. 4 edn. (Garland Science, New York, 2002)

    Google Scholar 

  3. M. Born, E. Wolf, Principles of Optics. 7th edn. (Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, 2002), p. 952

    Google Scholar 

  4. E.H. Synge, A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356 (1928)

    Google Scholar 

  5. E.A. Ash, G. Nichols, Super-resolution aperture scanning microscope. Nature 237 510–512 (1972)

    Google Scholar 

  6. D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: Image recording with resolution λ ∕ 20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  ADS  Google Scholar 

  7. A. Lewis et al., Development of a 500 A Resolution Light Microscope. Ultramicroscopy 13, 227–231 (1984)

    Article  Google Scholar 

  8. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  9. Z. Liu et al., Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686 (2007)

    Google Scholar 

  10. I.I. Smolyaninov, Y.-J. Hung, C.C. Davis, Magnifying superlens in the visible frequency range. Science 315(5819), 1699–1701 (2007)

    Article  ADS  Google Scholar 

  11. V.A. Podolskiy, E.E. Narimanov, Near-sighted superlens. Opt. Lett. 30, 75–78 (2005)

    Google Scholar 

  12. G. Toraldo di Francia, Supergain antennas and optical resolving power. Nuovo Cimento Suppl. 9, 426–435 (1952)

    Google Scholar 

  13. W. Lukosz, Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am. 56, 1463–1472 (1966)

    Article  ADS  Google Scholar 

  14. C. Cremer, T. Cremer, Considerations on a laser-scanning-microscope with high resolution and depth of field. Microscopica Acta 81(1), 31–44 (1978)

    Google Scholar 

  15. M. Minsky, Microscopy Apparatus. US Patent, 3,013,467 (1961)

    Google Scholar 

  16. T. Wilson, C.J.R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984)

    Google Scholar 

  17. J.B. Pawley, Handbook of Biological Confocal Microscopy, 2nd edn. (Springer, New York, 2006), p. 700

    Google Scholar 

  18. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965)

    Google Scholar 

  19. C.J.R. Sheppard, R. Kompfner, Resonant scanning optical microscope. Appl. Optics 17, 2879–2882 (1978)

    Google Scholar 

  20. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Google Scholar 

  21. A. Schönle, S.W. Hell, Far-field fluorescence microscopy with repetetive excitation. Eur. Phys. J. D 6, 283–290 (1999)

    Article  ADS  Google Scholar 

  22. M. Bertero, et al., Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy. J. Microsc. 157, 3–20 (1990)

    Google Scholar 

  23. J.-A. Conchello, J.G. McNally, Fast regularization technique for expectation maximization alogorithm for optical sectioning microscopy. SPIE Proc. 2655, 199–208 (1996)

    Article  ADS  Google Scholar 

  24. D.H. Burns et al., Strategies for attaining superresolution using spectroscopic data as constraints. Appl. Optics 24(2), 154–160 (1985)

    Article  ADS  Google Scholar 

  25. D.W. Pohl, D. Courjon, Near Field Optics (Kluwer, Dordrecht, 1993)

    Google Scholar 

  26. D.W. Pohl, Near-field optics: comeback of light in microscopy. Solid State Phenom. 63–64, 252–256 (1998)

    Google Scholar 

  27. E. Betzig et al., Near-field fluorescence imaging of cytoskeletal actin. Bioimaging 1, 129–136 (1993)

    Article  Google Scholar 

  28. A. Kirsch, C. Meyer, T.M. Jovin, Integrating of optical techniques in scanning probe microscopes; The scanning near-field optical microscope (SNOM), in Analytical Use of Fluorescenct Probes in Oncology, ed. by E. Kohen, J.G. Hirschberg (Plenum, New York, 1996), pp. 317–323

    Google Scholar 

  29. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, MA, 2006)

    Google Scholar 

  30. R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67(1), pp. 509–544 (1998)

    Article  Google Scholar 

  31. R.Y. Tsien, Imagining imaging’s future. Nat. Cell Biol. SS16–SS21 (2003)

    Google Scholar 

  32. S.W. Hell, Double-Scanning Confocal Microscope. European Patent, 0491289 (1990/1992)

    Google Scholar 

  33. S. Hell, E.H.K. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992)

    Article  ADS  Google Scholar 

  34. S.W. Hell, Improvement of lateral resolution in far-field light microscopy using two-photon excitation with offset beams. Opt. Commun. 106, 19–24 (1994)

    Article  ADS  Google Scholar 

  35. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19(11), 780–782 (1994)

    Article  ADS  Google Scholar 

  36. S.W. Hell, M. Kroug, Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995)

    Article  ADS  Google Scholar 

  37. A. Schönle, P.E. Hänninen, S.W. Hell, Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig), 8(2), 115–133 (1999)

    Google Scholar 

  38. S.W. Hell, S. Jakobs, L. Kastrup, Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003)

    Article  ADS  Google Scholar 

  39. S.W. Hell, Toward fluorescence nanoscopy. Nature Biotechnol. 21(11), 1347–1355 (2003)

    Google Scholar 

  40. S.W. Hell, M. Dyba, S. Jakobs, Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobio. 14(5), 599–609 (2004)

    Article  Google Scholar 

  41. S.W. Hell, Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326(1–2), 140–145 (2004)

    Article  MATH  ADS  Google Scholar 

  42. M. Hofmann et al., Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005)

    Article  ADS  Google Scholar 

  43. E. Betzig et al., Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313(5793), 1642–1645 (2006)

    Article  ADS  Google Scholar 

  44. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth. 3, 793–796 (2006)

    Article  Google Scholar 

  45. S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)

    Article  ADS  Google Scholar 

  46. S. Hell, E.H.K. Stelzer, Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992)

    Article  ADS  Google Scholar 

  47. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat, Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. SPIE 2412, 147–156 (1995)

    Article  ADS  Google Scholar 

  48. M. Schrader, S.W. Hell, 4Pi-confocal images with axial superresolution. J. Microsc. 183, 189–193 (1996)

    Article  Google Scholar 

  49. M. Nagorni, S.W. Hell, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. J. Opt. Soc. Am. A 18(1), 36–48 (2001)

    Google Scholar 

  50. P.E. Hänninen et al., Two-photon excitation 4pi confocal microscope: Enhanced axial resolution microscope for biological research. Appl. Phys. Lett. 66, 1698–1700 (1995)

    Article  ADS  Google Scholar 

  51. S.W. Hell, M. Schrader, H.T.M. van der Voort, Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc. 185(1), 1–5 (1997)

    Article  Google Scholar 

  52. M. Schrader et al., 4Pi-confocal imaging in fixed biological specimens. Biophys. J. 75, 1659–1668 (1998)

    Article  ADS  Google Scholar 

  53. M. Nagorni, S.W. Hell, 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998)

    Article  Google Scholar 

  54. A. Egner, S. Jakobs, S.W. Hell, Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Nat. Acad. Sci. U.S.A 99, 3370–3375 (2002)

    Google Scholar 

  55. A. Egner et al., 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J. Struct. Biol. 147(1), 70–76 (2004)

    Article  Google Scholar 

  56. H. Gugel et al., Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy. Biophys. J. 87, 4146–4152 (2004)

    Article  ADS  Google Scholar 

  57. J. Bewersdorf, B.T. Bennett, K.L. Knight, H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc. Natl. Acad Sci. USA 103, 18137–18142 (2006)

    Article  ADS  Google Scholar 

  58. A. Egner, S.W. Hell, Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15(4), 207–215 (2005)

    Article  Google Scholar 

  59. M. Lang et al., 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging. Opt. Expr. 15(5), 2459–2467 (2007)

    Article  ADS  Google Scholar 

  60. M. Lang, J. Engelhardt, S.W. Hell, 4Pi microscopy with linear fluorescence excitation. Opt. Lett. 32(3), 259–261 (2007)

    Article  ADS  Google Scholar 

  61. M.C. Lang et al., 4Pi microscopy with negligible sidelobes. New J. Phys. 10, 1–13 (2008)

    Article  ADS  Google Scholar 

  62. M.G. Gustafsson, D.A. Agard, J.W. Sedat. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution, in Three-Dimensional Microscopy: Image Acquisition and Processing III, Proceedings of SPIE, 1996

    Google Scholar 

  63. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat, I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999)

    Article  Google Scholar 

  64. B. Bailey et al., Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48 (1993)

    Article  ADS  Google Scholar 

  65. R. Freimann, S. Pentz, H. Hörler, Development of a standing-wave fluorescence microscope with high nodal plane flatness. J. Microsc. 187(3), 193–200 (1997)

    Article  Google Scholar 

  66. M. Nagorni, S.W. Hell, Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration. J. Opt. Soc. Am. A 18(1), 49–54 (2001)

    Google Scholar 

  67. J. Bewersdorf, R. Schmidt, S.W. Hell, Comparison of I5M and 4Pi-microscopy. J. Microsc. 222, 105–117 (2006)

    Article  MathSciNet  Google Scholar 

  68. S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)

    Google Scholar 

  69. V. Westphal, S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005)

    Google Scholar 

  70. B. Harke et al., Resolution scaling in STED microscopy. Opt. Expr. 16(6), 4154–4162 (2008)

    Article  ADS  Google Scholar 

  71. R. Heintzmann, T.M. Jovin, C. Cremer, Saturated patterned excitation microscopy – A concept for optical resolution improvement. J. Opt. Soc. Am. A 19(8), 1599–1609 (2002)

    Article  ADS  Google Scholar 

  72. M.G.L. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Nat. Acad. Sci. U.S.A 102(37), 13081–13086 (2005)

    Google Scholar 

  73. S.W. Hell, A. Schönle, Nanoscale resolution in far-field fluorescence microscopy, in Science of Microscopy, S.J.C.H., ed. by P.W. Hawkes (Springer, New York, 2007), p. 790–834

    Google Scholar 

  74. C. Eggeling et al., Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, doi:10.1038/nature07596 (2008)

    Google Scholar 

  75. S.W. Hell, Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering, in Topics in Fluorescence Spectroscopy, ed. by J.R. Lakowicz (Plenum, New York, 1997), p. 361–422

    Google Scholar 

  76. T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24(14), 954–956 (1999)

    Article  ADS  Google Scholar 

  77. T.A. Klar et al., Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Nat. Acad. Sci. U.S.A 97, 8206–8210 (2000)

    Google Scholar 

  78. T.A. Klar, E. Engel, S.W. Hell, Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613, 1–9 (2001)

    Google Scholar 

  79. W. Denk, Two-photon excitation in functional biological imaging. J. Biomed. Opt. 1, 296–304 (1996)

    Article  ADS  Google Scholar 

  80. K.I. Willig et al., STED microscopy with continuous wave beams. Nat. Meth. 4(11), 915–918 (2007)

    Article  Google Scholar 

  81. V. Westphal, L. Kastrup, S.W. Hell, Lateral resolution of 28 nm (λ ∕ 25) in far-field fluorescence microscopy. Appl. Phys. B 77(4), 377–380 (2003)

    Article  ADS  Google Scholar 

  82. F. Meinecke, Stimulierte Emission im Fluoreszenzmikroskop: Das STED Konzept zur Überwindung der Abbeschen Beugungsgrenze (Diplomarbeit, Ruprecht Karls Universität, Heidelberg, 1996)

    Google Scholar 

  83. M. Dyba, S.W. Hell, Focal spots of size λ ∕ 23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002)

    Article  ADS  Google Scholar 

  84. M. Dyba, S. Jakobs, S.W. Hell, Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 21(11), 1303–1304 (2003)

    Article  Google Scholar 

  85. G. Donnert et al., Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. USA 103(31), 11440–11445 (2006)

    Article  ADS  Google Scholar 

  86. D. Wildanger et al., STED microscopy with a supercontinuum laser source. Opt. Expr. 16(13), 9614–9621 (2008)

    Article  ADS  Google Scholar 

  87. R. Schmidt et al., Spherical nanosized spot unravel the interior of cells. Nat. Meth. 4(1), 81–86 (2008)

    Google Scholar 

  88. J. Keller, A. Schönle, S.W. Hell, Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt. Express 15(6), 3361–3371 (2007)

    Article  ADS  Google Scholar 

  89. K.I. Willig et al., STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086), 935–939 (2006)

    Article  ADS  Google Scholar 

  90. R.J. Kittel et al., Bruchpilot promotes active zone assembly, Ca2 + -channel clustering, and vesicle release. Science 312, 1051–1054 (2006)

    Article  ADS  Google Scholar 

  91. J.J. Sieber et al., The SNARE-motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90, 2843–2851 (2006)

    Article  ADS  Google Scholar 

  92. R. Kellner et al., Nanoscale organization of nicotinic acetylcholine receptors revealed by STED microscopy. Neuroscience 144(1), 135–143 (2007)

    Article  Google Scholar 

  93. V. Westphal et al., Dynamic far-field fluorescence nanoscopy. New J. Phys. 9, 435 (2007)

    Google Scholar 

  94. V. Westphal et al., Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246–249 (2008)

    Article  ADS  Google Scholar 

  95. L. Kastrup et al., Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005)

    Google Scholar 

  96. B. Hein, K. Willig, S.W. Hell, Stimulated emission depletion (STED) nanoscopy of a fluorescent protein – labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38), 14271–14276 (2008)

    Article  ADS  Google Scholar 

  97. V.U. Nägerl et al., Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad Sci. USA 105(48), 18982–18987 (2008)

    Article  ADS  Google Scholar 

  98. K. Willig et al., STED microscopy resolves nanoparticle assemblies. New J. Phys. 8, 106 (2006)

    Google Scholar 

  99. B. Harke et al., Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8(5), 1309–1313 (2008)

    Article  ADS  Google Scholar 

  100. E. Rittweger et al., STED microscopy reveals color centers with nanometric resolution. Submitted (2009).

    Google Scholar 

  101. G. Balasubramanian et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  ADS  Google Scholar 

  102. J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    Article  ADS  Google Scholar 

  103. C.C. Fu et al., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Nat. Acad. Sci. U.S.A. 104(3), 727–732 (2007)

    Article  ADS  Google Scholar 

  104. J.I. Chao et al., Nanometer-sized diamond particle as a probe for biolabeling. Biophysical J. 93(6), 2199–2208 (2007)

    Article  ADS  Google Scholar 

  105. S. Bretschneider, C. Eggeling, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007)

    Google Scholar 

  106. K.A. Lukyanov et al., Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275(34), 25879–25882 (2000)

    Article  Google Scholar 

  107. R. Ando, H. Mizuno, A. Miyawaki, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science. 306(5700), 1370–1373 (2004)

    Article  ADS  Google Scholar 

  108. O. Haeberle, Kindling molecules: a new way to ‘break’ the Abbe limit. C.R. Physique 5, 143–148 (2004)

    Google Scholar 

  109. W. Heisenberg, The Physical Principles of the Quantum Theory (Chicago University Press, Chicago, 1930)

    MATH  Google Scholar 

  110. N. Bobroff, Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57(6), 1152–1157 (1986)

    Article  ADS  Google Scholar 

  111. M.P. Gordon, T. Ha, P.R. Selvin, Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad Sci. U S A 101, 6462–6465 (2004)

    Article  ADS  Google Scholar 

  112. X. Qu et al., Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101(31), 11298–11303 (2004)

    Article  ADS  Google Scholar 

  113. H.F. Hess, E. Betzig, Optical microscopy with phototransformable labels. Patent Appl, WO 2006/127692 A2 (2005/2006)

    Google Scholar 

  114. S.W. Hell, Verfahren und Fluoreszenzlichtmikroskop zum räumlich hochauflösenden Abbilden einer Struktur einer Probe. German Patent, DE 10 2006 021 317 (2006/2007)

    Google Scholar 

  115. M. Bates et al., Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007)

    Article  ADS  Google Scholar 

  116. J. Fölling et al., Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. 46, 6266–6270 (2007)

    Article  Google Scholar 

  117. H. Bock et al., Two-color far-field fluorescence nanoscopy based on photoswitching emitters. Appl. Phys. B 88, 161–165 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  118. C. Geisler et al., Resolution of λ ∕ 10 in fluorescence microscopy using fast single molecule photo-switching. Appl. Phys. A 88(2), 223–226 (2007)

    Article  ADS  Google Scholar 

  119. A. Egner et al., Fluorescence nanoscopy in whole cells by asnychronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007)

    Article  ADS  Google Scholar 

  120. B. Huang et al., Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)

    Article  ADS  Google Scholar 

  121. H. Shroff et al., Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Meth. 5(5), 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  122. H. Shroff et al., Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Nat Acad. Sci. U.S.A. 104(51), 20308–20313 (2007)

    Article  ADS  Google Scholar 

  123. J. Fölling et al., Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Meth. 5, 943–945 (2008)

    Article  Google Scholar 

  124. M. Bossi et al., Multi-color far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8(8), 2463–2468 (2008)

    Article  ADS  Google Scholar 

  125. S. Weiss, Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Google Scholar 

  126. A. Yildiz et al., Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628), 2061–2065 (2003)

    Google Scholar 

  127. A.M. van Oijen et al., Far-field fluorescence microscopy beyond the diffraction limit. J. Opt. Soc. Am. A 16(4), 909–915 (1999)

    Article  ADS  Google Scholar 

  128. E. Betzig, Proposed method for molecular optical imaging. Opt. Lett. 20(3), 237–239 (1995)

    Article  ADS  Google Scholar 

  129. K.A. Lidke et al., Superresolution by localization of quantum dots using blinking statistics. Opt. Expr. 13(18), 7052–7062 (2005)

    Article  ADS  Google Scholar 

  130. S.W. Hell, J. Soukka, P.E. Hänninen, Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy. Bioimaging 3, 65–69 (1995)

    Article  Google Scholar 

  131. J. Fölling et al., Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. Chem. Phys. Chem. 9, 321–326 (2008)

    ADS  Google Scholar 

  132. M.F. Juette et al., Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Meth. 5(6), 527–529 (2008)

    Article  Google Scholar 

  133. C.V. Middendorff et al., Isotropic 3D Nanoscopy based on single emitter switching. Opt. Expr. 16(25), 20774–20788 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan W. Hell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hell, S.W. (2010). Far-Field Optical Nanoscopy. In: Gräslund, A., Rigler, R., Widengren, J. (eds) Single Molecule Spectroscopy in Chemistry, Physics and Biology. Springer Series in Chemical Physics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02597-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02597-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02596-9

  • Online ISBN: 978-3-642-02597-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics