Skip to main content

Chemo-Mechanical Coupling in the Rotary Molecular Motor F1-ATPase

  • Chapter
  • First Online:
Single Molecule Spectroscopy in Chemistry, Physics and Biology

Summary

F1-ATPase is a molecular motor in which the central γ subunit rotates inside the cylinder made of α3β3 subunits. The rotation is powered by ATP hydrolysis in three catalytic sites, and reverse rotation of the γ subunit by an external force leads to ATP synthesis in the catalytic sites. Single-molecule studies have revealed how the mechanical rotation is coupled to the chemical reactions in the three catalytic sites: binding/release of ATP, ADP, and phosphate, and hydrolysis/synthesis of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. Boyer, W.E. Kohlbrenner, The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts, in Energy Coupling in Photosynthesis, ed. by B.R. Selman, S. Selman-Reimer (Elsevier, Amsterdam, 1981), pp. 231–240

    Google Scholar 

  2. F. Oosawa, S. Hayashi, The loose coupling mechanism in molecular machines of living cells. Adv. Biophys. 22, 151–183 (1986)

    Article  Google Scholar 

  3. H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Jr, Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997)

    Article  ADS  Google Scholar 

  4. J.P. Abrahams, A.G.W. Leslie, R. Lutter, J.E. Walker, Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994)

    Google Scholar 

  5. H. Itoh, A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Jr., Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004)

    Article  ADS  Google Scholar 

  6. Y. Rondelez, G. Tresset, T. Nakashima, Y. Kato-Yamada, H. Fujita, S. Takeuchi, H. Noji, Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005)

    Article  ADS  Google Scholar 

  7. P.D. Boyer, The ATP synthase – a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997)

    Article  Google Scholar 

  8. K. Kinosita, Jr., R. Yasuda, H. Noji, F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 35, 3–18 (2000a)

    Google Scholar 

  9. K. Kinosita, Jr., R. Yasuda, H. Noji, K. Adachi, A rotary molecular motor that can work at near 100% efficiency. Phil.Trans. R. Soc. Lond. B 355, 473–489 (2000b)

    Google Scholar 

  10. K. Kinosita, Jr., K. Adachi, H. Itoh, Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33, 245–268 (2004)

    Article  Google Scholar 

  11. M. Yoshida, E. Muneyuki, T. Hisabori, ATP synthase – a marvelous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669–677 (2001)

    Article  Google Scholar 

  12. C. Gibbons, M.G. Montgomery, A.G.W. Leslie, J.E. Walker, The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 (2000)

    Google Scholar 

  13. Y. Shirakihara, A.G.W. Leslie, J.P. Abrahams, J.E. Walker, T. Ueda, Y. Sekimoto, M. Kambara, K. Saika, Y. Kagawa, M. Yoshida, The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5, 825–836 (1997)

    Article  Google Scholar 

  14. S. Furuike, M.D. Hossain, Y. Maki, K. Adachi, T. Suzuki, A. Kohori, H. Itoh, M. Yoshida, K. Kinosita, Jr., Axle-less F1-ATPase rotates in the correct direction. Science 319, 955–958 (2008a)

    Article  ADS  Google Scholar 

  15. R. Yasuda, H. Noji, K. Kinosita, Jr., M. Yoshida, F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 ∘  steps. Cell 93, 1117–1124 (1998)

    Article  Google Scholar 

  16. R. Yasuda, H. Noji, M. Yoshida, K. Kinosita, Jr., H. Itoh, Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001)

    Article  ADS  Google Scholar 

  17. J.M. Jault, C. Dou, N.B. Grodsky, T. Matsui, M. Yoshida, W.S. Allison, The α3β3γ subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 with the β T165S substitution does not entrap inhibitory MgADP in a catalytic site during turnover. J. Biol. Chem. 271, 28818–28824 (1996)

    Article  Google Scholar 

  18. Y. Hirono-Hara, H. Noji, M. Nishiura, E. Muneyuki, K.Y. Hara, R. Yasuda, K. Kinosita, Jr., M. Yoshida, Pause and rotation of F1-ATPase during catalysis. Proc. Natl. Acad. Sci. USA 98, 13649–13654 (2001)

    Article  ADS  Google Scholar 

  19. H. Noji, D. Bald, R. Yasuda, H. Itoh, M. Yoshida, K. Kinosita, Jr., Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480–25486 (2001)

    Article  Google Scholar 

  20. K. Adachi, H. Noji, K. Kinosita, Jr., Single-molecule imaging of rotation of F1-ATPase. Meth. Enzymol. 361, 211–227 (2003).

    Article  Google Scholar 

  21. K. Adachi, K. Oiwa, T. Nishizaka, S. Furuike, H. Noji, H. Itoh, M. Yoshida, K. Kinosita, Jr. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 (2007)

    Article  Google Scholar 

  22. N. Sakaki, R. Shimo-Kon, K. Adachi, H. Itoh, S. Furuike, E. Muneyuki, M. Yoshida, K. Kinosita, Jr., One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys. J. 88, 2047–2056 (2005)

    Article  Google Scholar 

  23. K. Shimabukuro, R. Yasuda, E. Muneyuki, K.Y. Hara, K. Kinosita, Jr., M. Yoshida, Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 ∘  substep rotation. Proc. Nat. Acad. Sci. USA 100, 14731–14736 (2003)

    Article  ADS  Google Scholar 

  24. T. Nishizaka, K. Oiwa, H. Noji, S. Kimura, E. Muneyuki, M. Yoshida, K. Kinosita, Jr., Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004)

    Article  Google Scholar 

  25. T. Ariga, E. Muneyuki, M. Yoshida, F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat. Struct. Mol. Biol. 14, 841–846 (2007)

    Article  Google Scholar 

  26. C.C. O’Neal, P.D. Boyer, Assessment of the rate of bound substrate interconversion and of ATP acceleration of product release during catalysis by mitochondrial adenosine triphosphatase. J. Biol. Chem. 259, 5761–5767 (1984)

    Google Scholar 

  27. R. Kagawa, M.G. Montgomery, K. Braig, A.G.W. Leslie, J.E. Walker, The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004)

    Article  Google Scholar 

  28. K. Shimabukuro, E. Muneyuki, M. Yoshida, An alternative reaction pathway of F1-ATPase suggested by rotation without 80 ∘  ∕ 40 ∘  substeps of a sluggish mutant at low ATP. Biophys. J. 90, 1028–1032 (2006)

    Article  Google Scholar 

  29. H. Wang, G. Oster, Energy transduction in the F1 motor of ATP synthase. Nature 396, 279–282 (1998)

    Article  ADS  Google Scholar 

  30. Y.M. Milgrom, R.L. Cross, Rapid hydrolysis of ATP by mitochondrial F1-ATPase correlates with the filling of the second of three catalytic sites. Proc. Natl. Acad. Sci. USA 102, 13831–13836 (2005)

    Article  ADS  Google Scholar 

  31. J. Weber, S. Wilke-Mounts, R.S. Lee, E. Grell, A.E. Senior, Specific placement of tryptophan in the catalytic sites of the Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem. 268, 20126–20133 (1993)

    Google Scholar 

  32. J. Weber, A.E. Senior, ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim. Biophys. Acta 1458, 300–309 (2000)

    Article  Google Scholar 

  33. C. Dou, P.A.G. Fortes, W.S. Allison, The α3(βY341W)3γ subcomplex of the F1-ATPase from the Thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Biochemistry 37, 16757–16764 (1998)

    Article  Google Scholar 

  34. S. Ono, K.Y. Hara, J. Hirao, T. Matsui, H. Noji, M. Yoshida, E. Muneyuki, Origin of apparent negative cooperativity of F1-ATPase. Biochim. Biophys. Acta 1607, 35–44 (2003)

    Article  Google Scholar 

  35. D.E. Koshland, Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958)

    Article  ADS  Google Scholar 

  36. S. Furuike, K. Adachi, N. Sakaki, R. Shimo-Kon, H. Itoh, E. Muneyuki, M. Yoshida, K. Kinosita, Jr., Temperature dependence of the rotation and hydrolysis activities of F1-ATPase. Biophys. J. 95, 761–770 (2008b)

    Article  Google Scholar 

  37. R.I. Menz, J.E. Walker, A.G.W. Leslie, Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331–341 (2001)

    Article  Google Scholar 

  38. M.W. Bowler, M.G. Montgomery, A.G.W. Leslie, J.E. Walker, How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103, 8646–8649 (2006)

    Article  ADS  Google Scholar 

  39. A.C. Hausrath, R.A. Capaldi, B.W. Matthews, The conformation of the ɛ- and γ-subunits within the Escherichia coli F1 ATPase. J. Biol. Chem. 276, 47227–47232 (2001)

    Article  Google Scholar 

  40. R. Yasuda, T. Masaike, K. Adachi, H. Noji, H. Itoh, K. Kinosita, Jr., The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 100, 9314–9318 (2003)

    Article  ADS  Google Scholar 

  41. V. Kabaleeswaran, N. Puri, J.E. Walker, A.G.W. Leslie, D.M. Mueller, Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J. 25, 5433–5442, (2006)

    Article  Google Scholar 

  42. M.D. Hossain, S. Furuike, Y. Maki, K. Adachi, M.Y. Ali, M. Huq, H. Itoh, M. Yoshida, K. Kinosita, Jr., The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Biophys. J. 90, 4195–4203 (2006)

    Article  ADS  Google Scholar 

  43. M.D. Hossain, S. Furuike, Y. Maki, K. Adachi, T. Suzuki, A. Kohori, H. Itoh, M. Yoshida, K. Kinosita, Jr., Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys. J. 95, 4837–4844 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the members of Kinosita and Yoshida labs for collaboration and discussion, R. Kanda-Terada for technical support, K. Sakamaki, M. Fukatsu, and H. Umezawa for encouragement and lab management. This work was supported by Grants-in-Aids for Specially Promoted Research from the Ministry of Education, Sports, Culture, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kinosita Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adachi, K. et al. (2010). Chemo-Mechanical Coupling in the Rotary Molecular Motor F1-ATPase. In: Gräslund, A., Rigler, R., Widengren, J. (eds) Single Molecule Spectroscopy in Chemistry, Physics and Biology. Springer Series in Chemical Physics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02597-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02597-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02596-9

  • Online ISBN: 978-3-642-02597-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics