Steps to a Cyber-Physical Model of Networked Embodied Anticipatory Behavior

  • Fabio P. Bonsignorio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5499)

Abstract

This paper proposes and discusses a modeling framework for embodied anticipatory behavior systems. This conceptual and theoretical framework is quite general and aims to be a, quite preliminary, step towards a general theory of cognitive adaptation to the environment of natural intelligent systems and to provide a possible approach to develop new more autonomous artificial systems. The main purpose of this discussion outline is to identify at least a few of the issues we have to cope with, and some of the possible methods to be used, if we aim to understand from a rigorous standpoint the dynamics of embodied adaptive learning systems both natural and artificial.

Keywords

anticipation adaptive embodiment intelligent agents information entropy complexity dynamical systems network emergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, C.E.: The Mathematical Theory of Communication. Bell Sys. Tech. J. 27, 379, 623 (1948)Google Scholar
  2. 2.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1(1), 1–7 (1965)MathSciNetMATHGoogle Scholar
  3. 3.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences: statistical considerations. J. Assoc. Comput. Mach. 16, 145–159 (1969)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)Google Scholar
  5. 5.
    Hommel, B.: Becoming an intentional agent: The emergence of voluntary action. In: 5th eu Cognition six montly meeting euCognition, Munchen (2008)Google Scholar
  6. 6.
    Biro, S., Hommel, B. (eds.): Becoming an intentional agent: Early development of action interpretation and action control. Special issue of Acta Psychologica (2007)Google Scholar
  7. 7.
    Biro, S., Hommel, B.: Becoming an intentional agent: Introduction to the special issue. Acta Psychologica 124, 1–7 (2007)CrossRefGoogle Scholar
  8. 8.
    Hoffmann, J.: Anticipatory Behavioral Control. In: Butz, M.V., Sigaud, O., Gerard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 44–65. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Butz, M.V., Sigaud, O., Gerard, P.: Internal Models and anticipation in adaptive learning systems. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 86–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Pezzulo, G.: Anticipation and future oriented capabilities in natural and artificial cognition. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.) 50 Years of AI. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    George, D., Hawkins, J.: A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, Los Alamitos (2005)Google Scholar
  12. 12.
    Van Essen, D.C., Anderson, C.H., Felleman, D.J.: Information processing in the primate visual system: an integrated systems perspective. Science 255(5043), 419–423 (1992)CrossRefGoogle Scholar
  13. 13.
    Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)CrossRefMATHGoogle Scholar
  14. 14.
    Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, Henry Holt and Company (2004)Google Scholar
  15. 15.
    Lee, T.S., Mumford, D.: Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 20(7), 1434–1448 (2003)CrossRefGoogle Scholar
  16. 16.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, San Francisco (1988)MATHGoogle Scholar
  17. 17.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  18. 18.
    Stringer, S.M., Rolls, E.T.: Invariant object recognition in the visual system with novel views of 3D objects. Neural Computation 14(11), 2585–2596 (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Bernardet, U., Bermúdez i Badia, S., Verschure, P.F.M.J.: A model for the neuronal substrate of dead reckoning and memory in arthropods: a comparative computational and behavioral study. Theory in Biosciences, 127 (2008)Google Scholar
  20. 20.
    Verschure, P.F.M.J.: Building a Cyborg: A Brain Based Architecture for Perception, Cognition and Action, Keynote talk, In: IROS 2008, Nice (2008)Google Scholar
  21. 21.
    Brooks, R.: A Robust Layered Control System for A Mobile Robot. IEEE Journal of Robotics and Automation (1986)Google Scholar
  22. 22.
    Pfeifer, R.: Cheap designs: exploiting the dynamics of the system-environment interaction. Three case studies on navigation. In: Conference on Prerational Intelligence — Phenomonology of Complexity Emerging in Systems of Agents Interacting Using Simple Rules, pp. 81–91. Center for Interdisciplinary Research, University of Bielefeld (1993)Google Scholar
  23. 23.
    Pfeifer, R., Iida, F.: Embodied artificial intelligence: Trends and challenges. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 1–26. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.): 50 Years of AI. Springer, Heidelberg (2007)Google Scholar
  25. 25.
    Touchette, H., Lloyd, S.: Information-theoretic approach to the study of control systems. Physica A 331, 140–172 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gomez, G., Lungarella, M., Tarapore, D.: Information-theoretic approach to embodied category learning. In: Proc. of 10th Int. Conf. on Artificial Life and Robotics, pp. 332–337 (2005)Google Scholar
  27. 27.
    Philipona, D., O’ Regan, J.K., Nadal, J.-P., Coenen, O.J.-M.D.: Perception of the structure of the physical world using unknown multimodal sensors and effectors. In: Advances in Neural Information Processing Systems (2004)Google Scholar
  28. 28.
    Olsson, L., Nehaiv, C.L., Polani, D.: Information Trade-Offs and the Evolution of Sensory Layouts. In: Proc. Artificial Life IX (2004)Google Scholar
  29. 29.
    Bonsignorio, F.P.: Preliminary Considerations for a Quantitative Theory of Networked Embodied Intelligence. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.) 50 Years of AI. Springer, Heidelberg (2007)Google Scholar
  30. 30.
    Bonsignorio, F.P.: On Some Information Metrics of Intelligent Material Systems. In: ASME ESDA 2008, Haifa (2008)Google Scholar
  31. 31.
    Burfoot, D., Lungarella, M., Kuniyoshi, Y.: Toward a Theory of Embodied Statistical Learning. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 270–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Lampe, A., Chatila, R.: Performance measures for the evaluation of mobile robot autonomy. In: ICRA 2006, Orlando USA (2006)Google Scholar
  33. 33.
    Gacs, P.: The Boltzmann Entropy and Randomness Tests. In: Proc. 2nd IEEE Workshop on Physics and Computation (PhysComp 1994), pp. 209–216 (1994)Google Scholar
  34. 34.
    Gruenwald, P., Vitanyi, P.: Shannon Information and Kolmogorov Complexity. IEEE Transactions on Information Theory (2004)Google Scholar
  35. 35.
    Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The Simplest Walking Model: Stability, Complexity, and Scaling, Transactions of the ASME. Journal of Biomechanical Engineering 120, 281–288 (1998)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Lloyd, S.: Use of mutual information to decrease entropy: Implication for the second law of thermodynamics. Phys. Rev. A 39(10), 5378–5386 (1989)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lloyd, S.: Measures of Complexity: A Non exhaustive List. IEEE Control Systems Magazine (2001)Google Scholar
  39. 39.
    Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory. Psychological Review 65(6), 386–408 (1958)CrossRefGoogle Scholar
  40. 40.
    Potter, S.: What can AI get from neuroscience? In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds.) 50 Years of AI. Springer, Heidelberg (2007)Google Scholar
  41. 41.
    Bach-y-Rita, P.: Sensory substitution and the human machine interface. Trends in Cognitive Sciences 7, 541–546 (2003)CrossRefGoogle Scholar
  42. 42.
    Bach-y-Rita, P.: Brain Mechanisms in Sensory Substitution. Academic Press, New York (1972)Google Scholar
  43. 43.
    Aihara, K., Matsumoto, G., Ikegaya, Y.: Periodic and non–periodic responses of a periodically forced Hodgkin–Huxley oscillator. J. Theor. Biol. 109, 249–269 (1984)CrossRefGoogle Scholar
  44. 44.
    Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144(6/7), 333–340 (1990)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Der, R.: Self-organized acquisition of situated behavior. Theory in Biosciences 120, 179–187 (2001)CrossRefGoogle Scholar
  46. 46.
    Der, R.: Artificial Life from the principle of homeokinesis. In: Proceedings of the German Workshop on Artificial Life (2008)Google Scholar
  47. 47.
    Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. In: European Conference on Complex Systems, Dresden (2007)Google Scholar
  48. 48.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving Spatiotemporal Coordination in a Modular Robotic System. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 558–569. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  49. 49.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)CrossRefGoogle Scholar
  50. 50.
    Funahashi, K.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183–192 (1989)CrossRefGoogle Scholar
  51. 51.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the IEEE Intl. Conf. On Neural Network, Washington DC, USA, vol. 4, pp. 1942–1948 (1995)Google Scholar
  52. 52.
    Millonas, M.M.: Swarms, Phase transitions, and Collective Intelligence. In: Langton, C.G. (ed.) Artificial Life III. Santa Fe Institute Studies in the Sciences of the Complexity, vol. XVII, pp. 417–445. Addison-Wesley, Reading (1994)Google Scholar
  53. 53.
    Albert, R., Barabasi, A.L.: Statistical physics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks (2000) arXiv:cond-mat/0011029Google Scholar
  55. 55.
    Milutinovic, D.L., Lima, P.U.: Cells and Robots Modeling and Control of large size agent populations. Springer, Heidelberg (2007)MATHGoogle Scholar
  56. 56.
    Morpurgo, D., Serenità, R., Seiden, P., Celada, F.: Modelling thymic functions in a cellular automation. International Immunology 7/4, 505–516 (1995)CrossRefGoogle Scholar
  57. 57.
    Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Steels, L.: Semiotic dynamics for embodied agents. IEEE Intelligent Systems, 32–38 (2006)Google Scholar
  59. 59.
    Baronchelli, A., Felici, M., Caglioti, E., Loreto, V., Steels, L.: Sharp Transitions towards Shared Vocabularies in Multi-Agent Systems (2005) arxiv.org/pdf/physics/0509075Google Scholar
  60. 60.
    Steels, L.: The Talking Heads Experiment, Laboratorium, Antwerpen. Words and Meanings, vol. 1 (1999)Google Scholar
  61. 61.
    Becker, S.: Implicit learning in 3D object recognition: The importance of temporal context. Neural Computation 11(2), 347–374 (1999)CrossRefGoogle Scholar
  62. 62.
    Wiskot, L., Sejnowski, T.J.: Slow feature analysis:Unsupervised learning of invariances. Neural Computation 14(4), 715–770 (2002)CrossRefMATHGoogle Scholar
  63. 63.
    Kopell, N.: Toward a theory of modeling central pattern generators. In: Cohen, A., Rossignol, S., Grillner, S. (eds.) Neural control of rhytmic movements in vertebrates. Wiley, New York (1988)Google Scholar
  64. 64.
    Kopell, N., Ermentrout, G.: Phase transition and other phenomena in chains of coupled oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Rus, D.L.: Robotics as Computation for Interaction with the Physical World. In: Special Session on CyberPhysical Systems, IEEE/RSJ 2008, Nice (2008)Google Scholar
  66. 66.
    Markus, G.F.: The Haphazard construction of the human mind. HoughtonMifflin, New York (2008)Google Scholar
  67. 67.
    Simon, H.: The architecture of complexity. Proc. Am. Phil. Soc. 106 (1962)Google Scholar
  68. 68.
    Ashby, W.R.: Design for a Brain. Chapman and Hill, London (1954)CrossRefMATHGoogle Scholar
  69. 69.
    Bateson, G.: Steps to an Ecology of Mind. University of Chicago Press, Chicago (1972)Google Scholar
  70. 70.
    Pavlov, I.P.: Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Translated and Edited by Anrep, G.V. (ed.). Oxford University Press, London (1927)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fabio P. Bonsignorio
    • 1
  1. 1.Heron Robots Srl, Via R.C.Ceccardi 1/18GenovaItaly

Personalised recommendations