Advertisement

Anticipatory Driving for a Robot-Car Based on Supervised Learning

  • Irene Markelić
  • Tomas Kulviĉius
  • Minija Tamosiunaite
  • Florentin Wörgötter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5499)

Abstract

Prediction and Planning are essential elements of successful human driving, making them equally important for autonomously driving systems. Many approaches achieve planning based on built-in world-knowledge. However, we show how a learning-based system can be extended to planning, needing little a priori knowledge. A car-like robot is trained by a human driver by constructing a database, where look ahead sensory information is stored together with action sequences. From that we achieve a novel form of velocity control, based only on information in image coordinates. For steering we employ a two-level approach in which database information is combined with an additional reactive controller. The result is a trajectory planning robot running at real-time, issuing steering and velocity control commands in a human manner.

Keywords

anticipatory behavior example based learning robot car driving longitudinal control lateral control learning from experience 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, R., Sessions, C.: Learning plans without a priori knowledge. Adaptive Behavior 8(3-4), 225–253 (2000)CrossRefGoogle Scholar
  2. 2.
    Dickmanns, E.D., Graefe, V.: Dynamic monocular machine vision. Machine Vision and Applications 1, 223–240 (1988)CrossRefGoogle Scholar
  3. 3.
    Turk, M.A., Morgenthaler, D.G., Gremban, K.D., Marra, M.: Vits-a vision system for autonomous land vehicle navigation. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 342–361 (1988)CrossRefGoogle Scholar
  4. 4.
    Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the darpa grand challenge. J. Robot. Syst. 23(9), 661–692 (2006)Google Scholar
  5. 5.
    Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Dolan, J., Duggins, D., Ferguson, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T., Kelly, A., Kohanbash, D., Likhachev, M., Miller, N., Peterson, K., Rajkumar, R., Rybski, P., Salesky, B., Scherer, S., Woo-Seo, Y., Simmons, R., Singh, S., Snider, J., Stentz, A., Whittaker, W.R., Ziglar, J.: Tartan racing: A multi-modal approach to the darpa urban challenge. Darpa Technical Report (2007)Google Scholar
  6. 6.
    Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems, vol. 1, Morgan Kaufmann, San Francisco (1989)Google Scholar
  7. 7.
    Pomerleau, D.: Efficient training of artificial neural networks for autonomous navigation. Neural Computation 3(1), 88–97 (1991)CrossRefGoogle Scholar
  8. 8.
    Pomerleau, D.: Neural network based autonomous navigation. In: NAVLAB 1990, pp. 558–614 (1990)Google Scholar
  9. 9.
    Pomerleau, D.A.: Neural network vision for robot driving. In: The Handbook of Brain Theory and Neural Networks. M. Arbib (1999)Google Scholar
  10. 10.
    Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to drive a real car in 20 minutes. In: Proc. Frontiers in the Convergence of Bioscience and Information Technologies, FBIT 2007, pp. 645–650 (2007)Google Scholar
  11. 11.
    Togelius, J., Lucas, S.: Evolving robust and specialized car racing skills. In: Evolutionary Computation IEEE Congress on Proc. CEC 2006, pp. 1187–1194 (2006)Google Scholar
  12. 12.
    Brookhuis, K., de Waard, D.: Limiting speed, towards an intelligent speed adapter (isa). Transportation Research Part F: Traffic Psychology and Behaviour 2, 81–90 (1999)CrossRefGoogle Scholar
  13. 13.
    Tahirovic, A., Konjicija, S., Avdagic, Z., Meier, G., Wurmthaler, C.: Longitudinal vehicle guidance using neural networks. In: Computational Intelligence in Robotics and Automation, CIRA 2005 (2005)Google Scholar
  14. 14.
    Partouche, D., Pasquier, M., Spalanzani, A.: Intelligent speed adaptation using a self-organizing neuro-fuzzy controller. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 846–851 (2007)Google Scholar
  15. 15.
    Kwasnicka, H., Dudala, M.: Neuro-fuzzy driver learning from real driving observations. In: Proceedings of the Artificial Intelligence in Control and Managamnent (2002)Google Scholar
  16. 16.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transaction of the ASME Journal of Basic Engineering, 33–45 (1960)Google Scholar
  17. 17.
    Volksbot (2000), http://www.volksbot.de
  18. 18.
    Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  19. 19.
    Donges, E.: A two-level model of driver steering behaviour. Hum Factors 20, 691–707 (1978)Google Scholar
  20. 20.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10, 112–122 (1973)CrossRefGoogle Scholar
  21. 21.
    Aha, D.W. (ed.): Lazy Learning. Artificial Intelligence Review, vol. 11, pp. 7–10. Kluwer Academic Publishers, Dordrecht (1997)MATHGoogle Scholar
  22. 22.
    Bottou, L., Vapnik, V.: Local learning algorithms. Neural Computation 4, 888–900 (1992)CrossRefGoogle Scholar
  23. 23.
    Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning in problems with continuous state and action spaces. Adaptive Behavior 6, 163–217 (1997)CrossRefGoogle Scholar
  24. 24.
    Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous spaces. In: Proceedings of the Seventeenth International Conference on Machine Learning (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Irene Markelić
    • 1
  • Tomas Kulviĉius
    • 1
  • Minija Tamosiunaite
    • 2
  • Florentin Wörgötter
    • 1
  1. 1.Bernstein Center for Computational NeuroscienceUniversity of GöttingenGöttingenGermany
  2. 2.Vytautas Magnus UniversityKaunasLithuania

Personalised recommendations