Skip to main content

Templated Self-Assembly of Particles

  • Chapter
Book cover Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nanoparticles are frequently immobilized on substrates to use them as functional elements. In the resulting layer, the particles are accessible, so that their useful properties can be exploited, but their positions are fixed, so that their behavior is stable and reproducible. Frequently, the particlesʼ positions have to be well defined. Templated assembly can position particles even in the low-nanometer size regime, and it can do so efficiently for many particles in parallel. Thus, nanoparticles become building blocks, capable of forming complex superstructures.

Templated assembly is based on a simple idea: particles are brought to a surface that has binding sites which strongly interact with the particles. Ideally, the particles adsorb solely at the predefined binding sites, thus creating the desired arrangement. In reality, it is often a challenge to reach good yields, high precision, and good specificity, in particular for very small particles. Since the method is very general, particles of various materials such as oxides, metals, semiconductors, and polymers can be arranged for applications ranging from microelectronics to optics and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

CMOS:

complementary metal–oxide–semiconductor

DNA:

deoxyribonucleic acid

DPN:

dip-pen nanolithography

LBL:

layer-by-layer

MEMS:

microelectromechanical system

MIMIC:

micromolding in capillaries

NIL:

nanoimprint lithography

NP:

nanoparticle

NP:

nanoprobe

PDMS:

polydimethylsiloxane

PMMA:

poly(methyl methacrylate)

RFID:

radiofrequency identification

RSA:

random sequential adsorption

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SATI:

self-assembly, transfer, and integration

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

UV:

ultraviolet

References

  1. A.N. Shipway, E. Katz, I. Willner: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem. 1(1), 18–52 (2000)

    Article  Google Scholar 

  2. C.B. Murray, C.R. Kagan, M.G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    Article  Google Scholar 

  3. F. Caruso: Nanoengineering of particle surfaces, Adv. Mater. 13(1), 11 (2001)

    Article  Google Scholar 

  4. K. Molhave, T.M. Hansen, D.N. Madsen, P. Boggild: Towards pick-and-place assembly of nanostructures, J. Nanosci. Nanotechnol. 4(3), 279–282 (2004)

    Article  Google Scholar 

  5. P. Alivisatos: The use of nanocrystals in biological detection, Nat. Biotechnol. 22(1), 47–52 (2004)

    Article  Google Scholar 

  6. S. Paul, C. Pearson, A. Molloy, M.A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M.C. Petty: Langmuir–Blodgett film deposition of metallic nanoparticles and their application to electronic memory structures, Nano Lett. 3(4), 533–536 (2003)

    Article  Google Scholar 

  7. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade: Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton 2008)

    MATH  Google Scholar 

  8. H.J.J. Yeh, J.S. Smith: Fluidic self-assembly for the integration of GaAs light-emitting-diodes on Si substrates, IEEE Photon. Technol. Lett. 6(6), 706–708 (1994)

    Article  Google Scholar 

  9. A. Einstein: The theory of the Brownian motion, Ann. Phys. 19(2), 371–381 (1906)

    Article  MATH  Google Scholar 

  10. R.M. Mazo: Brownian Motion. Fluctuations, Dynamics, and Applications (Clarendon, Oxford 2002)

    MATH  Google Scholar 

  11. J. Aizenberg, P.V. Braun, P. Wiltzius: Patterned colloidal deposition controlled by electrostatic and capillary forces, Phys. Rev. Lett. 84(13), 2997–3000 (2000)

    Article  Google Scholar 

  12. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama: Mechanism of formation of 2-dimensional crystals from latex-particles on substrates, Langmuir 8(12), 3183–3190 (1992)

    Article  Google Scholar 

  13. S. Chandrasekhar: Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15(1), 1–89 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  14. W.R. Russel, D.A. Saville, W.R. Schowalter: Colloidal Dispersions (Cambridge Univ. Press, Cambridge 1989)

    Book  Google Scholar 

  15. J.M. Schurr: Role of diffusion in bimolecular solution kinetics, Biophys. J. 10(8), 700–716 (1970)

    Article  Google Scholar 

  16. J. Feder: Random sequential adsorption, J. Theor. Biol. 87(2), 237–254 (1980)

    Article  Google Scholar 

  17. J.W. Evans: Random and cooperative sequential adsorption, Rev. Mod. Phys. 65(4), 1281–1329 (1993)

    Article  Google Scholar 

  18. J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot: From car parking to protein adsorption: An overview of sequential adsorption processes, Colloids Surf. A 165(1-3), 287–324 (2000)

    Article  Google Scholar 

  19. X.Y. Ling, L. Malaquin, D.N. Reinhoudt, H. Wolf, J. Huskens: An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions, Langmuir 23(20), 9990–9999 (2007)

    Article  Google Scholar 

  20. H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides: Fabrication of a cylindrical display by patterned assembly, Science 296(5566), 323–325 (2002)

    Article  Google Scholar 

  21. C.R. Barry, M.G. Steward, N.Z. Lwin, H.O. Jacobs: Printing nanoparticles from the liquid and gas phases using nanoxerography, Nanotechnology 14(10), 1057–1063 (2003)

    Article  Google Scholar 

  22. C.R. Barry, J. Gu, H.O. Jacobs: Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution, Nano Lett. 5(10), 2078–2084 (2005)

    Article  Google Scholar 

  23. P. Mesquida, A. Stemmer: Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip, Adv. Mater. 13(18), 1395–1398 (2001)

    Article  Google Scholar 

  24. C.R. Barry, H.O. Jacobs: Fringing field directed assembly of nanomaterials, Nano Lett. 6(12), 2790–2796 (2006)

    Article  Google Scholar 

  25. H. Kim, J. Kim, H.J. Yang, J. Suh, T. Kim, B.W. Han, S. Kim, D.S. Kim, P.V. Pikhitsa, M. Choi: Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols, Nat. Nanotechnol. 1(2), 117–121 (2006)

    Article  Google Scholar 

  26. I. Lee, H.P. Zheng, M.F. Rubner, P.T. Hammond: Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces, Adv. Mater. 14(8), 572–577 (2002)

    Article  Google Scholar 

  27. U. Srinivasan, D. Liepmann, R.T. Howe: Microstructure to substrate self-assembly using capillary forces, J. Microelectromech. Syst. 10(1), 17–24 (2001)

    Article  Google Scholar 

  28. S.T. Liu, R. Maoz, G. Schmid, J. Sagiv: Template guided self-assembly of [Au(55)] clusters on nanolithographically defined monolayer patterns, Nano Lett. 2(10), 1055–1060 (2002)

    Article  Google Scholar 

  29. J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl: DNA-templated self-assembly of metallic nanocomponent arrays on a surface, Nano Lett. 4(12), 2343–2347 (2004)

    Article  Google Scholar 

  30. P. Maury, M. Peter, O. Crespo-Biel, X.Y. Ling, D.N. Reinhoudt, J. Huskens: Patterning the molecular printboard: patterning cyclodextrin monolayers on silicon oxide using nanoimprint lithography and its application in 3-D multilayer nanostructuring, Nanotechnology 18(4), 044007 (2007)

    Article  Google Scholar 

  31. J.J. Talghader, J.K. Tu, J.S. Smith: Integration of fluidically self-assembled optoelectronic devices using a silicon-based process, IEEE Photon. Technol. Lett. 7(11), 1321–1323 (1995)

    Article  Google Scholar 

  32. K.F. Böhringer: Surface modification and modulation in microstructures: controlling protein adsorption, monolayer desorption and micro-self-assembly, J. Micromech. Microeng. 13(4), S1–S10 (2003)

    Article  Google Scholar 

  33. W. Zheng, H.O. Jacobs: Self-assembly process to integrate and connect semiconductor dies on surfaces with single-angular orientation and contact-pad registration, Adv. Mater. 18(11), 1387 (2006)

    Article  Google Scholar 

  34. S.A. Stauth, B.A. Parviz: Self-assembled single-crystal silicon circuits on plastic, Proc. Natl. Acad. Sci. USA 103(38), 13922–13927 (2006)

    Article  Google Scholar 

  35. H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides: Fabrication of a cylindrical display by patterned assembly, Science 296(5566), 323–325 (2002)

    Article  Google Scholar 

  36. X.R. Xiong, Y. Hanein, J.D. Fang, Y.B. Wang, W.H. Wang, D.T. Schwartz, K.F. Böhringer: Controlled multibatch self-assembly of microdevices, J. Microelectromech. Syst. 12(2), 117–127 (2003)

    Article  Google Scholar 

  37. J. Tien, A. Terfort, G.M. Whitesides: Microfabrication through electrostatic self-assembly, Langmuir 13(20), 5349–5355 (1997)

    Article  Google Scholar 

  38. K.M. Chen, X.P. Jiang, L.C. Kimerling, P.T. Hammond: Selective self-organization of colloids on patterned polyelectrolyte templates, Langmuir 16(20), 7825–7834 (2000)

    Article  Google Scholar 

  39. H.P. Zheng, M.F. Rubner, P.T. Hammond: Particle assembly on patterned "plus/minus" polyelectrolyte surfaces via polymer-on-polymer stamping, Langmuir 18(11), 4505–4510 (2002)

    Article  Google Scholar 

  40. P. Maury, M. Peter, V. Mahalingam, D.N. Reinhoudt, J. Huskens: Patterned self-assembled monolayers on silicon oxide prepared by nanoimprint lithography and their applications in nanofabrication, Adv. Funct. Mater. 15(3), 451–457 (2005)

    Article  Google Scholar 

  41. S.T. Liu, R. Maoz, J. Sagiv: Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality, Nano Lett. 4(5), 845–851 (2004)

    Article  Google Scholar 

  42. Y.H. Kim, J. Park, P.J. Yoo, P.T. Hammond: Selective assembly of colloidal particles on a nanostructured template coated with polyclectrolyte multilayers, Adv. Mater. 19(24), 4426 (2007)

    Article  Google Scholar 

  43. X.Y. Ling, I.Y. Phang, D.N. Reinhoudt, G.J. Vancso, J. Huskens: Supramolecular layer-by-layer assembly of 3-D multicomponent nanostructures via multivalent molecular recognition, Int. J. Mol. Sci. 9, 486–497 (2008)

    Article  Google Scholar 

  44. M.W. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.K. Lew, J.M. Redwing, C.D. Keating, T.S. Mayer: Bottom-up assembly of large-area nanowire resonator arrays, Nat. Nanotechnol. 3(2), 88–92 (2008)

    Article  Google Scholar 

  45. B. Kannan, R.P. Kulkarni, A. Majumdar: DNA-based programmed assembly of gold nanoparticles on lithographic patterns with extraordinary specificity, Nano Lett. 4, 1521–1524 (2004)

    Article  Google Scholar 

  46. H. Zhang, Z. Li, C.A. Mirkin: Dip–pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides, Adv. Mater. 14, 1472–1474 (2002)

    Article  Google Scholar 

  47. E. Winfree, F.R. Liu, L.A. Wenzler, N.C. Seeman: Design and self-assembly of two-dimensional DNA crystals, Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  48. P.W.K. Rothemund: Folding DNA to create nanoscale shapes and patterns, Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  49. J. Sharma, R. Chhabra, Y. Liu, Y. Ke, H. Yan: DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays, Angew. Chem. Int. Ed. 45, 730–735 (2006)

    Article  Google Scholar 

  50. I. Cheng, B. Wei, X. Zhang, Y. Wang, Y. Mi: Patterning of gold nanoparticles on DNA self-assembled scaffolds, Res. Lett. Nanotechnol. 2008, 827174 (2008)

    Google Scholar 

  51. A. Kuzyk, B. Yurke, J.J. Toppari, V. Linko, P. Törmä: Dielectrophoretic trapping of DNA origami, Small 4, 447–450 (2008)

    Article  Google Scholar 

  52. M. Suzuki, T. Yasukawa, Y. Mase, D. Oyamatsu, H. Shiku, T. Matsue: Dielectrophoretic micropatterning with microparticle monolayers covalently linked to glass surfaces, Langmuir 20, 11005–11011 (2004)

    Article  Google Scholar 

  53. P.Y. Chiou, A.T. Ohta, M.C. Wu: Massively parallel manipulation of single cells and microparticles using optical images, Nature 436(7049), 370–372 (2005)

    Article  Google Scholar 

  54. P. Maury, M. Escalante, D.N. Reinhoudt, J. Huskens: Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography, Adv. Mater. 17(22), 2718–2723 (2005)

    Article  Google Scholar 

  55. Y.D. Yin, Y. Lu, B. Gates, Y.N. Xia: Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, J. Am. Chem. Soc. 123(36), 8718–8729 (2001)

    Article  Google Scholar 

  56. L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, H. Wolf: Controlled particle placement through convective and capillary assembly, Langmuir 23, 11513–11521 (2007)

    Article  Google Scholar 

  57. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten: Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  58. B.G. Prevo, O.D. Velev: Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions, Langmuir 20(6), 2099–2107 (2004)

    Article  Google Scholar 

  59. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N.D. Spencer, H. Wolf: Nanoparticle printing with single-particle resolution, Nat. Nanotechnol. 2, 570–576 (2007)

    Article  Google Scholar 

  60. Y. Cui, M.T. Bjork, J.A. Liddle, C. Sonnichsen, B. Boussert, A.P. Alivisatos: Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4(6), 1093–1098 (2004)

    Article  Google Scholar 

  61. C.A. Fustin, G. Glasser, H.W. Spiess, U. Jonas: Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces, Langmuir 20, 9114–9123 (2004)

    Article  Google Scholar 

  62. Y.N. Xia, Y.D. Yin, Y. Lu, J. McLellan: Template-assisted self-assembly of spherical colloids into complex and controllable structures, Adv. Funct. Mater. 13(12), 907–918 (2003)

    Article  Google Scholar 

  63. M.J. Gordon, D. Peyrade: Separation of colloidal nanoparticles using capillary immersion forces, Appl. Phys. Lett. 89(5), 053112 (2006)

    Article  Google Scholar 

  64. H. Schmid, B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33(8), 3042–3049 (2000)

    Article  Google Scholar 

  65. C. Minelli, C. Hinderling, H. Heinzelmann, R. Pugin, M. Liley: Micrometer-long gold nanowires fabricated using block copolymer templates, Langmuir 21(16), 7080–7082 (2005)

    Article  Google Scholar 

  66. O.D. Velev, E.W. Kaler: In situ assembly of colloidal particles into miniaturized biosensors, Langmuir 15(11), 3693–3698 (1999)

    Article  Google Scholar 

  67. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires, Appl. Phys. Lett. 77(9), 1399–1401 (2000)

    Article  Google Scholar 

  68. N.V. Dziomkina, G.J. Vancso: Colloidal crystal assembly on topologically patterned templates, Soft Matter 1(4), 265–279 (2005)

    Article  Google Scholar 

  69. G. Markovich, C.P. Collier, J.R. Heath: Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy, Phys. Rev. Lett. 80(17), 3807–3810 (1998)

    Article  Google Scholar 

  70. E. Kim, Y.N. Xia, G.M. Whitesides: Micromolding in capillaries: Applications in materials science, J. Am. Chem. Soc. 118(24), 5722–5731 (1996)

    Article  Google Scholar 

  71. Y. Lu, Y.D. Yin, B. Gates, Y.N. Xia: Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic methods, Langmuir 17(20), 6344–6350 (2001)

    Article  Google Scholar 

  72. I. Langmuir, V.J. Schaefer: Activities of urease and pepsin monolayers, J. Am. Chem. Soc. 60, 1351–1360 (1938)

    Article  Google Scholar 

  73. T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N.D. Spencer, H. Wolf: Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles, Adv. Mater. 17(20), 2438–2442 (2005)

    Article  Google Scholar 

  74. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, F. Besenbacher: Properties of large organic molecules on metal surfaces, Prog. Surf. Sci. 71(5–8), 95–146 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Kraus or Heiko Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Kraus, T., Wolf, H. (2010). Templated Self-Assembly of Particles. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics