Skip to main content

Mechanical Properties of Nanostructures

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

NEMS Structural integrity is of paramount importance in all devices. Load applied during the use of devices can result in component failure. Cracks can develop and propagate under tensile stresses, leading to failure. Knowledge of the mechanical properties of nanostructures is necessary for designing realistic micro-/nanoelectromechanial systems (MEMS/NEMS) and biological micro-/nanoelectromechanical systems (bioMEMS/bioNEMS) devices. Elastic and inelastic properties are needed to predict the deformation due to an applied load in the elastic and inelastic regimes, respectively. The strength property is needed to predict the allowable operating limit. Some of the properties of interest are hardness, elastic modulus, bending strength, fracture toughness, and fatigue strength. Many of the mechanical properties are scale dependent; therefore these should be measured at relevant scales. Atomic force microscopy and nanoindenters can be used satisfactorily to evaluate the mechanical properties of micro-/nanoscale structures. Commonly used materials in MEMS/NEMS are single-crystal silicon and silicon-based materials, e.g., SiO2 and polysilicon films deposited by low-pressure chemical vapor deposition. Single-crystal SiC deposited on large-area silicon substrates is used for high-temperature micro-/nanosensors and actuators. Amorphous alloys can be formed on both metal and silicon substrates by sputtering and plating techniques, providing more flexibility in surface integration. Electroless-deposited Ni-P amorphous thin films have been used to construct microdevices, especially using the so-called LIGA (lithography, galvanoformung, abformung) techniques. Micro-/nanodevices need conductors to provide power, as well as electrical/magnetic signals, to make them functional. Electroplated gold films have found wide applications in electronic devices because of their ability to make thin films and be processed simply. Polymers, such as poly(methyl methacrylate) (PMMA), poly(dimethylsiloxane) (PDMS), and polystyrene are commonly used in bioMEMS/bioNEMS, such as micro-/nanofluidic devices, because of ease of manufacturing and reduced cost. Many polymers are biocompatible so they may be integrated into biomedical devices.

This chapter presents a review of mechanical property measurements on the micro-/nanoscale of various materials of interest, and stress and deformation analyses of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

APCVD:

atmospheric-pressure chemical vapor deposition

CSM:

continuous stiffness measurement

DI:

deionized

DI:

digital instrument

FEM:

finite element method

FEM:

finite element modeling

LIGA:

Lithographie Galvanoformung Abformung

LPCVD:

low-pressure chemical vapor deposition

MEMS:

microelectromechanical system

MST:

microsystem technology

NEMS:

nanoelectromechanical system

P–V:

peak-to-valley

PDMS:

polydimethylsiloxane

PECVD:

plasma-enhanced chemical vapor deposition

PMMA:

poly(methyl methacrylate)

PPMA:

poly(propyl methacrylate)

PS/clay:

polystyrene/nanoclay composite

PS:

polystyrene

PVA:

polyvinyl alcohol

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

References

  1. R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White (Eds.): Microsensors (IEEE Press, New York 1990)

    Google Scholar 

  2. I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996)

    Google Scholar 

  3. W.S. Trimmer (Ed.): Micromachines and MEMS, Classic and Seminal Papers to 1990 (IEEE Press, New York 1997)

    Google Scholar 

  4. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Google Scholar 

  5. B. Bhushan: Handbook of Micro-/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  6. B. Bhushan: Nanotribology and Nanomechanics, 2nd edn. (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  7. G.T.A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw-Hill, Boston 1998)

    Google Scholar 

  8. S.D. Senturia: Microsystem Design (Kluwer, Boston 2000)

    Google Scholar 

  9. M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin 2001)

    Google Scholar 

  10. M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton 2002)

    MATH  Google Scholar 

  11. T.R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw-Hill, Boston 2002)

    Google Scholar 

  12. M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)

    Google Scholar 

  13. A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin 2005)

    Google Scholar 

  14. K.E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)

    Google Scholar 

  15. G. Timp (Ed.): Nanotechnology (Springer, New York 1999)

    Google Scholar 

  16. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties and Applications (Springer, Berlin 2001)

    Google Scholar 

  17. E.A. Rietman: Molecular Engineering of Nanosystems (Springer, New York 2001)

    Google Scholar 

  18. H.S. Nalwa (Ed.): Nanostructures Materials and Nanotechnology (Academic, San Diego 2002)

    Google Scholar 

  19. W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (Ed.): Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton 2002)

    Google Scholar 

  20. A. Manz, H. Becker (Eds.): Microsystem Technology in Chemistry and Life Sciences, Top. Curr. Chem., Vol. 194 (Springer, Heidelberg 1998)

    Google Scholar 

  21. J. Cheng, L.J. Kricka (Eds.): Biochip Technology (Harwood Academic, Philadelphia 2001)

    Google Scholar 

  22. M.J. Heller, A. Guttman (Eds.): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001)

    Google Scholar 

  23. C. Lai Poh San, E.P.H. Yap (Eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001)

    Google Scholar 

  24. C.H. Mastrangelo, H. Becker (Eds.): Microfluidics and BioMEMS, Proc. SPIE, Vol. 4560 (SPIE, Bellingham 2001)

    Google Scholar 

  25. H. Becker, L.E. Lacascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)

    Google Scholar 

  26. D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Google Scholar 

  27. C.P. Poole, F.J. Owens: Introduction to Nanotechnology (Wiley, Hoboken 2003)

    Google Scholar 

  28. A. van den Berg (Ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003)

    Google Scholar 

  29. J.V. Zoval, M.J. Madou: Centrifuge-based fluidic platforms, Proc. IEEE 92, 140–153 (2000)

    Google Scholar 

  30. R. Raiteri, M. Grattarola, H. Butt, P. Skladal: Micromechanical cantilever-based biosensors, Sens. Actuators B 79, 115–126 (2001)

    Google Scholar 

  31. W.C. Tang, A.P. Lee: Defense applications of MEMS, MRS Bulletin 26, 318–319 (2001)

    Google Scholar 

  32. M.R. Taylor, P. Nguyen, J. Ching, K.E. Peterson: Simulation of microfluidic pumping in a genomic DNA blood-processing cassette, J. Micromech. Microeng. 13, 201–208 (2003)

    Google Scholar 

  33. K. Park (Ed.): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington 1997)

    Google Scholar 

  34. R.S. Shawgo, A.C.R. Grayson, Y. Li, M.J. Cima: BioMEMS for drug delivery, Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002)

    Google Scholar 

  35. P.Å. Öberg, T. Togawa, F.A. Spelman: Sensors in Medicine and Health Care (Wiley, New York 2004)

    Google Scholar 

  36. S.N. Bhatia, C.S. Chen: Tissue engineering at the micro-scale, Biomed. Microdevices 2, 131–144 (1999)

    Google Scholar 

  37. R.P. Lanza, R. Langer, J. Vacanti (Eds.): Principles of Tissue Engineering (Academic, San Diego 2000)

    Google Scholar 

  38. E. Leclerc, K.S. Furukawa, F. Miyata, T. Sakai, T. Ushida, T. Fujii: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25, 4683–4690 (2004)

    Google Scholar 

  39. T.H. Schulte, R.L. Bardell, B.H. Weigl: Microfluidic technologies in clinical diagnostics, Clin. Chim. Acta 321, 1–10 (2002)

    Google Scholar 

  40. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  41. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  42. B. Bhushan: Macro- and microtribology of MEMS materials. In: Modern Tribology Handbook, ed. by B. Bhushan (CRC, Boca Raton 2001) pp. 1515–1548

    Google Scholar 

  43. S. Johansson, J.A. Schweitz, L. Tenerz, J. Tiren: Fracture testing of silicon microelements in-situ in a scanning electron microscope, J. Appl. Phys. 63, 4799–4803 (1988)

    Google Scholar 

  44. F. Ericson, J.A. Schweitz: Micromechanical fracture strength of silicon, J. Appl. Phys. 68, 5840–5844 (1990)

    Google Scholar 

  45. E. Obermeier: Mechanical and thermophysical properties of thin film materials for MEMS: Techniques and devices, Micromech. Struct. Mater. Res. Symp. Proc., Vol. 444 (Materials Research Society, Pittsburgh 1996) pp. 39–57

    Google Scholar 

  46. C.J. Wilson, A. Ormeggi, M. Narbutovskih: Fracture testing of silicon microcantilever beams, J. Appl. Phys. 79, 2386–2393 (1996)

    Google Scholar 

  47. W.N. Sharpe Jr., B. Yuan, R.L. Edwards: A new technique for measuring the mechanical properties of thin films, J. Microelectromech. Syst. 6, 193–199 (1997)

    Google Scholar 

  48. K. Sato, T. Yoshioka, T. Anso, M. Shikida, T. Kawabata: Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip, Sens. Actuators A 70, 148–152 (1998)

    Google Scholar 

  49. S. Greek, F. Ericson, S.S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Youngʼs modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)

    Google Scholar 

  50. D.A. LaVan, T.E. Buchheit: Strength of polysilicon for MEMS devices, Proc. SPIE 3880, 40–44 (1999)

    Google Scholar 

  51. E. Mazza, J. Dual: Mechanical behavior of a μ m-sized single crystal silicon structure with sharp notches, J. Mech. Phys. Solids 47, 1795–1821 (1999)

    MATH  Google Scholar 

  52. T. Yi, C.J. Kim: Measurement of mechanical properties for MEMS materials, Meas. Sci. Technol. 10, 706–716 (1999)

    Google Scholar 

  53. H. Kahn, M.A. Huff, A.H. Heuer: Heating effects on the Youngʼs modulus of films sputtered onto micromachined resonators, Microelectromech. Struct. Mater. Res. Symp. Proc., Vol. 518 (Materials Research Society, Pittsburgh 1998) pp. 33–38

    Google Scholar 

  54. S. Johansson, F. Ericson, J.A. Schweitz: Influence of surface-coatings on elasticity, residual-stresses, and fracture properties of silicon microelements, J. Appl. Phys. 65, 122–128 (1989)

    Google Scholar 

  55. R. Ballarini, R.L. Mullen, Y. Yin, H. Kahn, S. Stemmer, A.H. Heuer: The fracture toughness of polysilicon microdevices: A first report, J. Mater. Res. 12, 915–922 (1997)

    Google Scholar 

  56. H. Kahn, R. Ballarini, R.L. Mullen, A.H. Heuer: Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens, Proc. R. Soc. Lond. Ser. A 455, 3807–3823 (1999)

    Google Scholar 

  57. A.M. Fitzgerald, R.H. Dauskardt, T.W. Kenny: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon, Sens. Actuators A 83, 194–199 (2000)

    Google Scholar 

  58. T. Tsuchiya, A. Inoue, J. Sakata: Tensile testing of insulating thin films: Humidity effect on tensile strength of SiO2 films, Sens. Actuators A 82, 286–290 (2000)

    Google Scholar 

  59. J.A. Connally, S.B. Brown: Micromechanical fatigue testing, Exp. Mech. 33, 81–90 (1993)

    Google Scholar 

  60. K. Komai, K. Minoshima, S. Inoue: Fracture and fatigue behavior of single-crystal silicon microelements and nanoscopic AFM damage evaluation, Microsyst. Technol. 5, 30–37 (1998)

    Google Scholar 

  61. T. Namazu, Y. Isono, T. Tanaka: Evaluation of size effect on mechanical properties of single-crystal silicon by nanoscale bending test using AFM, J. Microelectromech. Syst. 9, 450–459 (2000)

    Google Scholar 

  62. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101, 338–351 (2002)

    Google Scholar 

  63. X. Li, B. Bhushan: Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Surf. Coat. Technol. 163/164, 521–526 (2003)

    Google Scholar 

  64. X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim: Mechanical characterization of micro-/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97, 481–494 (2003)

    Google Scholar 

  65. G. Wei, B. Bhushan, N. Ferrell, D. Hansford: Microfabrication and nanomechanical characterization of polymer MEMS for biological applications, J. Vac. Sci. Technol. A 23, 811–819 (2005)

    Google Scholar 

  66. M. Palacio, B. Bhushan, N. Ferrell, D. Hansford: Nanomechanical characterization of polymer beam structures for bioMEMS applications, Sens. Actuators A 135, 637–650 (2007)

    Google Scholar 

  67. T. Hsu, N. Sun: Residual stresses/strains analysis of MEMS, Proc. Int. Conf. Model. Simul. Microsyst. Semicond. Sens. Actuators, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge 1998) pp. 82–87

    Google Scholar 

  68. A. Kolpekwar, C. Kellen, R.D. Blanton: Fault model generation for MEMS, Proc. Int. Conf. Model. Simul. Microsyst. Semicond. Sens. Actuators, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge 1998) pp. 111–116

    Google Scholar 

  69. H.A. Rueda, M.E. Law: Modeling of strain in boron-doped silicon cantilevers, Proc. Int. Conf. Model. Simul. Microsyst. Semicond. Sens. Actuators, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge 1998) pp. 94–99

    Google Scholar 

  70. M. Heinzelmann, M. Petzold: FEM analysis of microbeam bending experiments using ultra-micro indentation, Comput. Mater. Sci. 3, 169–176 (1994)

    Google Scholar 

  71. C.J. Wilson, P.A. Beck: Fracture testing of bulk silicon microcantilever beams subjected to a side load, J. Microelectromech. Syst. 5, 142–150 (1996)

    Google Scholar 

  72. B. Bhushan, G.B. Agrawal: Stress analysis of nanostructures using a finite element method, Nanotechnology 13, 515–523 (2002)

    Google Scholar 

  73. B. Bhushan, G.B. Agrawal: Finite element analysis of nanostructures with roughness and scratches, Ultramicroscopy 97, 495–507 (2003)

    Google Scholar 

  74. K.E. Petersen: Silicon as a mechanical material, Proc. IEEE 70, 420–457 (1982)

    Google Scholar 

  75. B. Bhushan, S. Sundararajan, X. Li, C.A. Zorman, M. Mehregany: Micro-/nanotribological studies of single-crystal silicon and polysilicon and SiC films for use in MEMS devices. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 407–430

    Google Scholar 

  76. S. Sundararajan, B. Bhushan: Micro-/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)

    Google Scholar 

  77. X. Li, B. Bhushan: Micro-/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)

    Google Scholar 

  78. H. Becker, C. Gärtner: Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21, 12–26 (2000)

    Google Scholar 

  79. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides: Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27–40 (2000)

    Google Scholar 

  80. M. Palacio, B. Bhushan, N. Ferrell, D. Hansford: Adhesion properties of polymer/silicon interfaces for biological micro-/nanoelectromechanical applications, J. Vac. Sci. Technol. A 25, 1275–1284 (2007)

    Google Scholar 

  81. B. Ellis: Polymers: A Property Database (CRC, Boca Raton 2000), available on compact disk, also see http://www.polymersdatabase.com/

    Google Scholar 

  82. J. Brandrup, E.H. Immergut, E.A. Grulke: Polymer Handbook (Wiley, New York 1999)

    Google Scholar 

  83. J.E. Mark: Polymers Data Handbook (Oxford Univ. Press, New York 1999)

    Google Scholar 

  84. B. Bhushan, X. Li: Nanomechanical characterization of solid surfaces and thin films, Int. Mater. Rev. 48, 125–164 (2003)

    Google Scholar 

  85. B.R. Lawn, A.G. Evans, D.B. Marshall: Elastic/plastic indentation damage in ceramics: the median/radial system, J. Am. Ceram. Soc. 63, 574 (1980)

    Google Scholar 

  86. S. Sundararajan, B. Bhushan, T. Namazu, Y. Isono: Mechanical property measurements of nanoscale structures using an atomic force microscope, Ultramicroscopy 91, 111–118 (2002)

    Google Scholar 

  87. W.C. Young, R.G. Budynas: Roarkʼs Formulas for Stress and Strain (McGraw-Hill, New York 2002)

    Google Scholar 

  88. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd edn. (Wiley, New York 1989) pp. 277–278

    Google Scholar 

  89. Anonymous: Properties of Silicon, EMIS Datarev. Ser., Vol. 4 (INSPEC Institution of Electrical Engineers, London 1988)

    Google Scholar 

  90. C.T.-C. Nguyen, R.T. Howe: An integrated CMOS micromechanical resonator high-Q oscillator, IEEE J. Solid-State Circuits 34, 440–455 (1999)

    Google Scholar 

  91. L.J. Hornbeck: A digital light processing update – status and future applications, Proc. Soc. Photo-Opt. Eng., Projection Displ. V, Vol. 3634 (1999) pp. 158–170

    Google Scholar 

  92. M. Tanaka: Fracture toughness and crack morphology in indentation fracture of brittle materials, J. Mater. Sci. 31, 749 (1996)

    Google Scholar 

  93. B. Bhushan, S. Venkatesan: Mechanical and tribological properties of silicon for micromechanical applications: A review, Adv. Inf. Storage Syst. 5, 211–239 (1993)

    Google Scholar 

  94. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings, and Surface Treatments (McGraw-Hill, New York 1991), reprint with corrections (Krieger, Malabar 1997)

    Google Scholar 

  95. T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga: Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films, J. Microelectromech. Syst. 7, 106–113 (1998)

    Google Scholar 

  96. T. Yi, L. Li, C.J. Kim: Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength, Sens. Actuators A 83, 172–178 (2000)

    Google Scholar 

  97. I.H. Loh, M.S. Sheu, A.B. Fischer: Biocompatible polymer surfaces. In: Functional Polymers: Syntheses and Applications, ed. by R. Arshady (American Chemical Society, Washington 1997)

    Google Scholar 

  98. D.B. Holt, P.R. Gauger, A.W. Kusterbech, F.S. Ligler: Fabrication of a capillary immunosensor in polymethyl methacrylate, Biosens. Bioelectron. 17, 95–103 (2002)

    Google Scholar 

  99. F.W.J. Billmeyer: Textbook of Polymer Science (Wiley, New York 1984)

    Google Scholar 

  100. Anonymous: Rohm and Haas General Information on PMMA (Philadelphia, Pennsylvania)

    Google Scholar 

  101. T.G. van Kooten, H.T. Spijker, H.H. Busscher: Plasma-treated polystyrene surfaces: Model surface for studying cell-biomaterial interactions, Biomaterials 25, 1735–1747 (2004)

    Google Scholar 

  102. M. Alexandre, P. Dubois: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. 28, 1–63 (2000)

    Google Scholar 

  103. S.S. Ray, M. Okamoto: Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28, 1539–1641 (2003)

    Google Scholar 

  104. R.H. Boundy, R.F. Boyer (Eds.): Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York 1952)

    Google Scholar 

  105. Anonymous: Modern Plastics Encyclopedia (McGraw-Hill, New York 1996)

    Google Scholar 

  106. S.P. Timoshenko, J.N. Goodier: Theory of Elasticity, 3rd edn. (McGraw-Hill, New York 1970)

    MATH  Google Scholar 

  107. J.E. Shigley, L.D. Mitchell: Mechanical Engineering Design, 4th edn. (McGraw-Hill, New York 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bhushan, B. (2010). Mechanical Properties of Nanostructures. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics