Force Measurements with Optical Tweezers

  • Othmar MartiEmail author
  • Katrin HübnerEmail author
Part of the Springer Handbooks book series (SHB)


An optical tweezer is a scientific instrument that uses a focused laser beam to provide an attractive or repulsive force, depending on the index mismatch, to physically hold and move microscopic dielectric objects [33.1]:

Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on – and the measurement of nanometer-level displacements of – optically trapped objects.

The ability to apply forces in the piconewton range to micrometer-sized particles while simultaneously measuring displacement with nanometer resolution is now routinely adopted for the study of molecular motors at the single-molecule level [33.2], the physics of colloids and mesoscopic systems [33.3,4], and the mechanical properties of polymers and biopolymers [33.5,6,7]. In parallel with the widespread use of optical trapping, theoretical and experimental work on fundamental aspects of optical trapping is being actively pursued [33.8,9,10]. In this chapter we will give a short overview of the principles of trapping and detection; different calibration methods, as well as the influence of surfaces and viscosity, will be discussed. The chapter ends with a short insight into the application of optical tweezers to cell biology.


Corner Frequency Viscous Drag Gradient Force Optical Tweezer Trap Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





autocorrelation function


charge-coupled device


filamentous actin


intermediate filament






numerical aperture


optical tweezers


photonic force microscope


position-sensitive detector


position-sensitive diode


power-spectral density


quadrant photodiode


  1. 33.1.
    K.C. Neuman, S.M. Block: Optical trapping, Rev. Sci. Instrum. 75(9), 2787–2809 (2004)CrossRefGoogle Scholar
  2. 33.2.
    N.B. Becker, S.M. Altmann, T. Scholz, J.K.H. Hörber, E.H.K. Stelzer, A. Rohrbach: Three-dimensional bead position histograms reveal single-molecule nanomechanics, Phys. Rev. E 71, 021907 (2005)CrossRefGoogle Scholar
  3. 33.3.
    R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S.A. Safran: Localized dynamic light scattering: probing single particle dynamics at the nanoscale, Phys. Rev. Lett. 78(1), 154–157 (1997)CrossRefGoogle Scholar
  4. 33.4.
    A.R. Clapp, A.G. Ruta, R.B. Dickinson: Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface, Rev. Sci. Instrum. 70(6), 2627–2636 (2001)CrossRefGoogle Scholar
  5. 33.5.
    D.G. Grier: A revolution in optical manipulation, Nature 424, 810–816 (2003)CrossRefGoogle Scholar
  6. 33.6.
    K. Svoboda, S.M. Block: Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)CrossRefGoogle Scholar
  7. 33.7.
    C.L. Kuyper, D.T. Chiu: Optical trapping: A versatile technique for biomanipulation, Appl. Spectrosc. 56(11), 300A–312A (2002)CrossRefGoogle Scholar
  8. 33.8.
    K. Visscher, G.J. Brakenhoff: Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik 89(2), 174–180 (1992)Google Scholar
  9. 33.9.
    K. Visscher, G.J. Brakenhoff: Theoretical study of optically induced forces on spherical particles in a single beam trap II: Mie scatterers, Optik 90(2), 57–60 (1992)Google Scholar
  10. 33.10.
    A. Mazolli, P.A. Maia Neto, H.M. Nussenzveig: Theory of trapping forces in optical tweezers, Proc. R. Soc. Lond. Ser. A 459, 3021–3041 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 33.11.
    A. Ashkin: Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24(4), 156–159 (1970)CrossRefGoogle Scholar
  12. 33.12.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11(5), 288–290 (1986)CrossRefGoogle Scholar
  13. 33.13.
    A. Ashkin: Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett. 40(12), 729–732 (1978)CrossRefGoogle Scholar
  14. 33.14.
    C.T. Lim, M. Dao, S. Suresh, C.H. Sow, K.T. Chew: Large deformations of living cells using laser traps, Acta Mater. 52, 1837–1845 (2004)CrossRefGoogle Scholar
  15. 33.15.
    A. Ashkin, J.M. Dziedzic: Internal cell manipulation using infrared laser traps, Proc. Natl. Acad. Sci. USA 86, 7914–7918 (1989)CrossRefGoogle Scholar
  16. 33.16.
    A. Ashkin: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J. 61(2), 569–582 (1992)CrossRefGoogle Scholar
  17. 33.17.
    Y. Harada, T. Asakura: Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124(5/6), 529–541 (1996)CrossRefGoogle Scholar
  18. 33.18.
    J.P. Barton, D.R. Alexander, S.A. Schaub: Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam, J. Appl. Phys. 66(10), 4594–4602 (1989)CrossRefGoogle Scholar
  19. 33.19.
    A. Rohrbach, E.-L. Florin, E.H.K. Stelzer: Photonic force microscopy: Simulation of principles and applications, Proc. SPIE 4431, 75–86 (2001)CrossRefGoogle Scholar
  20. 33.20.
    A. Rohrbach: Stiffness of optical traps: Quantitative agreement between experiment and electromagnetic theory, Phys. Rev. Lett. 95, 168102 (2005)CrossRefGoogle Scholar
  21. 33.21.
    A. Pralle, M. Prummer, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber: Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light, Microsc. Res. Technol. 44, 378–386 (1999)CrossRefGoogle Scholar
  22. 33.22.
    M. Born, E. Wolf: Principles of Optics (Univ. Press, New York 1999)Google Scholar
  23. 33.23.
    A. Rohrbach, E.H.K. Stelzer: Three-dimensional position detection of optically trapped dielectric particles, J. Appl. Phys. 91(8), 5474–5488 (2002)CrossRefGoogle Scholar
  24. 33.24.
    G. Pesce, A. Sasso, S. Fusco: Viscosity measurements on micron-size scale using optical tweezers, Rev. Sci. Instrum. 76, 115105 (2005)CrossRefGoogle Scholar
  25. 33.25.
    A. Pralle, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber: Local viscosity probed by photonic force microscopy, Appl. Phys. A 66, 71–73 (1998)CrossRefGoogle Scholar
  26. 33.26.
    M.C. Williams: Optical tweezers: measuring piconewton forces. In: Biophysics Textbook Online (1992)
  27. 33.27.
    J. Happel, H. Brenner: Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs 1965)Google Scholar
  28. 33.28.
    E.-L. Florin, A. Pralle, E.H.K. Stelzer, J.K.H. Hörber: Photonic force microscope calibration by thermal noise analysis, Appl. Phys. A 66, 75–78 (1998)CrossRefGoogle Scholar
  29. 33.29.
    K. Berg-Sørensen, H. Flyvbjerg: Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75(3), 594–612 (2004)CrossRefGoogle Scholar
  30. 33.30.
    S.F. Tolic, E. Schäffer, J. Howard, F.S. Pavone, F. Jülicher, H. Flyvbjerg: Calibration of optical tweezers with positional detection in the back focal plane, Rev. Sci. Instrum. 77, 103101 (2006)CrossRefGoogle Scholar
  31. 33.31.
    M. Fischer, K. Berg-Sørensen: Calibration of trapping force and response function of optical tweezers in viscoelastic media, J. Opt. A Pure Appl. Opt. 9, 239–250 (2007)CrossRefGoogle Scholar
  32. 33.32.
    L. Onsager: Reciprocal relations in irreversible processes 1, Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  33. 33.33.
    L. Onsager, S. Machlup: Fluctuations and irreversible processes, Phys. Rev. 91(6), 1505–1512 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 33.34.
    H. Brenner: The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci. 16, 242–251 (1961)CrossRefGoogle Scholar
  35. 33.35.
    A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, E.H.K. Stelzer: Trapping and tracking a local probe with photonic force microscope, Rev. Sci. Instrum. 75(6), 2197–2210 (2004)CrossRefGoogle Scholar
  36. 33.36.
    C. Tischer, S. Altmann, S. Fisinger, J.K.H. Hörber, E.H.K. Stelzer, E.-L. Florin: Three-dimensional thermal noise imaging, Appl. Phys. Lett. 79(23), 3878–3880 (2001)CrossRefGoogle Scholar
  37. 33.37.
    S.P. Gross: Application of optical traps in vivo, Method. Enzymol. 361, 162–174 (2003)CrossRefGoogle Scholar
  38. 33.38.
    S.C. Kuo: Using optics to measure biological forces and mechanics, Traffic 2(11), 757–763 (2001)CrossRefGoogle Scholar
  39. 33.39.
    H. Herrmann, M. Hesse, M. Reichenzeller, U. Aebi, T.M. Magin: Functional complexity of intermediate filament cytoskeletons: From structure to assembly to gene ablation, Int. Rev. Cytol. 223, 83–175 (2003)CrossRefGoogle Scholar
  40. 33.40.
    M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. Bishr Omary, P.P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, T. Seufferlein: Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells, Nat. Cell Biol. 5(9), 803–811 (2003)CrossRefGoogle Scholar
  41. 33.41.
    T.M. Svitkina, G.G. Borisy: Correlative light and electron microscopy of the cytoskeleton, Cell Biol. 28, 277–286 (1998)Google Scholar
  42. 33.42.
    A. Gigler, O. Marti: Quantitative measurement of materials properties with the (digital) pulsed force mode. In: Applied Scanning Probe Methods IX – Characterization, Nanosci. Technol., ed. by B. Bhushan, H. Fuchs, M. Tomitori (Springer, Berlin, Heidelberg 2008) pp. 23–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsUlm UniversityUlmGermany
  2. 2.Staatliche Fachoberschule Neu-UlmNeu-UlmGermany

Personalised recommendations