Tree Representation in Combined Polyphonic Music Comparison

  • David Rizo
  • Kjell Lemström
  • José M. Iñesta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5493)


Identifying copies or different versions of a same musical work is a focal problem in maintaining large music databases. In this paper we introduce novel ideas and methods that are applicable to metered, symbolically encoded polyphonic music. We show how to represent and compare polyphonic music using a tree structure. Moreover, we put for trial various comparison methods and observe whether better comparison results can be obtained by combining distinct similarity measures. Our experiments show that the proposed representation is adequate for the task with good quality results and processing times, and when combined with other methods it becomes more robust against various types of music.


Edit Distance Tree Representation Node Label Musical Work Pitch Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meudic, B., Staint-James, E.: Automatic Extraction of Approximate Repetitions in Polyphonic Midi Files Based on Perceptive Criteria. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 124–142. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proc. 7th Int. Symp. on String Processing Inf. Retrieval, pp. 39–48 (2000)Google Scholar
  3. 3.
    Bloch, J.J., Dannenberg, R.B.: Real-time accompaniment of polyphonic keyboard performance. In: Proc. Int. Comp. Music Conference, pp. 279–290 (1985)Google Scholar
  4. 4.
    Clausen, M., Engelbrecht, R., Meyer, D., Schmitz, J.: Proms: A web-based tool for searching in polyphonic music. In: Proc. Int. Symp. on Music Inf. Retrieval (2000)Google Scholar
  5. 5.
    Doraisamy, S., Rüger, S.M.: A polyphonic music retrieval system using n-grams. In: Proc. Int. Symp. on Music Inf. Retrieval (2004)Google Scholar
  6. 6.
    Dovey, M.J.: A technique for “regular expression” style searching in polyphonic music. In: Proc. Int. Symp. on Music Inf. Retrieval, pp. 179–185 (2001)Google Scholar
  7. 7.
    Hyyrö, H.: Bit-parallel LCS-length computation revisited. In: Proc. 15th Australasian Workshop on Combinatorial Algorithms, pp. 16–27 (2004)Google Scholar
  8. 8.
    Lemström, K., Mäkinen, V., Mikkilä, N.: Fast index based filters for music retrieval (submitted) Google Scholar
  9. 9.
    Lemström, K., Pienimäki, A.: On comparing edit distance and geometric frameworks in content-based retrieval of symbolically encoded polyphonic music. Musicae Scientiae 4A, 135–152 (2007)CrossRefGoogle Scholar
  10. 10.
    Lubiw, A., Tanur, L.: Pattern matching in polyphonic music as a weighted geometric translation problem. In: Proc. Int. Symp. on Music Inf. Retrieval, pp. 289–296 (2004)Google Scholar
  11. 11.
    Mongeau, M., Sankoff, D.: Comparison of musical sequences. Computers and the Humanities 24, 161–175 (1990)CrossRefGoogle Scholar
  12. 12.
    Moreno-Seco, F., Iñesta, J.M., Ponce de León, P., Micó, L.: Comparison of classifier fusion methods for classification in pattern recognition tasks. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 705–713. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Pienimäki, A., Lemström, K.: Clustering symbolic music using paradigmatic and surface level analyses. In: Proc. Int. Symp. on Music Inf. Retrieval, pp. 262–265 (2004)Google Scholar
  14. 14.
    Rizo, D., Iñesta, J.M., Ponce de León, P.J.: Tree model of symbolic music for tonality guessing. In: Proc. IASTED Int. Conf. on Artificial Intelligence and Applications, pp. 299–304 (2006)Google Scholar
  15. 15.
    Rizo, D., Iñesta, J.M.: Tree-structured representation of melodies for comparison and retrieval. In: Proc. 2nd Int. Conf. on Pattern Recognition in Inf. Systems, pp. 140–155 (2002)Google Scholar
  16. 16.
    Rizo, D., Ponce de León, P.J., Iñesta, J.M.: Towards a human-friendly melody characterization by automatically induced rules. In: Proc. Int. Symp. on Music Inf. Retrieval (2007) (to appear)Google Scholar
  17. 17.
    Selkow, S.M.: The tree-to-tree editing problem. Inf. Proc. Letters 6(6), 184–186 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shasha, S., Zhang, K.: Approximate Tree Pattern Matching. In: Pattern Matching Algorithms, ch. 11, pp. 341–371. Oxford Press, Oxford (1997)Google Scholar
  19. 19.
    Temperley, D.: An evaluation system for metrical models. Comp. Music J. 28(3), 28–44 (2004)CrossRefGoogle Scholar
  20. 20.
    Uitdenbogerd, A.L., Zobel, J.: Melodic matching techniques for large music databases. In: Proc. ACM Multimedia (1999)Google Scholar
  21. 21.
    Ukkonen, E., Lemström, K., Mäkinen, V.: Sweepline the music! In: Klein, R., Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 330–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Wiggins, G.A., Lemström, K., Meredith, D.: SIA(M)ESE: An algorithm for transposition invariant, polyphonic content-based music retrieval. In: Proc. Int. Symp. on Music Inf. Retrieval, pp. 283–284 (2002)Google Scholar
  23. 23.
    Borg, I., Groenen, P.: Modern multidimensional scaling - theory and applications. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)zbMATHGoogle Scholar
  25. 25.
    Ryu, T.W., Eick, C.F.: A Unified Similarity Measure for Attributes with Set or Bag of Values for Database Clustering in. In: Proc. Sixth International Workshop on Rough Sets, Data Mining and Granular Computing (RSDMGrC 1998), Research Triangle Park (NC) (October 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Rizo
    • 1
  • Kjell Lemström
    • 2
  • José M. Iñesta
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de Alicante 1AlicanteSpain
  2. 2.Dept. of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations