Skip to main content

Stability and Performances in Biclustering Algorithms

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2008)

Abstract

Stability is an important property of machine learning algorithms. Stability in clustering may be related to clustering quality or ensemble diversity, and therefore used in several ways to achieve a deeper understanding or better confidence in bioinformatic data analysis. In the specific field of fuzzy biclustering, stability can be analyzed by porting the definition of existing stability indexes to a fuzzy setting, and then adapting them to the biclustering problem. This paper presents work done in this direction, by selecting some representative stability indexes and experimentally verifying and comparing their properties. Experimental results are presented that indicate both a general agreement and some differences among the selected methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum, New York (1981)

    Book  Google Scholar 

  2. Brivio, P.A., Binaghi, E., Rampini, A., Ghezzi, P.: A Fuzzy Set-Based Accuracy Assessment of Soft Classifications. Pattern Recognition Letters 20, 935–948 (1999)

    Article  Google Scholar 

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. Int. Conf. Intell. Syst. Mol. Bio., vol. 8, pp. 93–103 (2000)

    Google Scholar 

  4. Congalton, R.G.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, Boca Raton (1999)

    Google Scholar 

  5. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)

    Google Scholar 

  6. Browder, F.: Nonexpansive nonlinear operators in a banach space. Proc. Nat. Acad. Sci. U.S.A. 54, 1041–1044 (1965)

    Article  CAS  Google Scholar 

  7. Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum Sum-Squared Residue Co-clustering of Gene Expression Data. In: Proc. Fourth SIAM Int. Conf. on Data Mining, pp. 114–125 (2004)

    Google Scholar 

  8. Filippone, M., Masulli, F., Rovetta, S., Mitra, S., Banka, H.: Possibilistic approach to biclustering: An application to oligonucleotide microarray data analysis. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 312–322. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fred, A.L.N., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 128–136 (2003)

    Google Scholar 

  10. Göhde, D.: Zum prinzip der kontraktiven abbildung. Math. Nachr. 30, 251–258 (1965)

    Google Scholar 

  11. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  12. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  13. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)

    Article  Google Scholar 

  14. Krishnapuram, R., Keller, J.M.: The possibilistic C-Means algorithm: insights and recommendations. IEEE Transactions on Fuzzy Systems 4(3), 385–393 (1996)

    Article  Google Scholar 

  15. Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1798–1808 (2006)

    Article  PubMed  Google Scholar 

  16. Kung, S.Y., Mak, M.W., Tagkopoulos, I.: Multi-metric and multi-substructure biclustering analysis for gene expression data. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB 2005) (2005)

    Google Scholar 

  17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Masulli, F., Schenone, A.: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artificial Intelligence in Medicine 16, 129–147 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39(12), 2464–2477 (2006)

    Article  Google Scholar 

  20. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1-2), 91–118 (2003)

    Article  Google Scholar 

  21. Peeters, R.: The maximum edge biclique problem is NP-Complete. Discrete Applied Mathematics 131, 651–654 (2003)

    Article  Google Scholar 

  22. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecturem. Nature Genetics 22(3) (1999)

    Google Scholar 

  23. Tjhi, W.-C., Chen, L.: Minimum sum-squared residue for fuzzy co-clustering. Intelligent Data Analysis 10(3), 237–249 (2006)

    Google Scholar 

  24. Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data demonstrated through systematic performance tests. Computational Statistics and Data Analysis 48(2), 235–254 (2005)

    Article  Google Scholar 

  25. Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: BIBE 2003: Proceedings of the 3rd IEEE Symposium on BioInformatics and BioEngineering, p. 321. IEEE Computer Society, Washington (2003)

    Chapter  Google Scholar 

  26. Zhang, Z., Teo, A., Ooi, B.C.A.: Mining deterministic biclusters in gene expression data. In: Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 283–292 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filippone, M., Masulli, F., Rovetta, S. (2009). Stability and Performances in Biclustering Algorithms. In: Masulli, F., Tagliaferri, R., Verkhivker, G.M. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2008. Lecture Notes in Computer Science(), vol 5488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02504-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02504-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02503-7

  • Online ISBN: 978-3-642-02504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics