Coarse-Grained Modeling of the HIV–1 Protease Binding Mechanisms: II. Folding Inhibition

  • Gennady M. Verkhivker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5488)

Abstract

Evolutionary and structurally conserved fragments 24–34 and 83–93 from each of the HIV–1 protease (HIV–1 PR) monomers constitute the critical components of the HIV–1 PR folding nucleus. It has been recently discovered that the peptide with the amino acid sequence NIIGRNLLTQI identical to the corresponding segment 83–93 of the HIV–1 PR monomer, can inhibit folding of HIV–1 PR. We have previously shown that this peptide can form stable complexes with the folded HIV–1 PR monomer by targeting the conserved segment 24–34 of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini β–sheet region (dimerization inhibition). In this follow-up study, we propose a generalized, coarse–grained model of the folding inhibition based simulations with an ensemble of both folded and partially unfolded HIV–1 PR conformational states. Using a dynamic equilibrium between low–energy complexes formed with the folded and partially unfolded HIV–1 PR monomers, the NIIGRNLLTQI peptide may effectively intervene with the HIV–1 PR folding and dimerization. The performed microscopic analysis reconciles the experimental and computational results and rationalizes the molecular basis of folding inhibition.

Keywords

HIV–1 protease folding inhibitors protein conformational ensembles molecular docking Monte Carlo simulations drug design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohl, N.E., Emini, E.A., Schleif, W.A., Davis, L.J., Heimbach, J.C., Dixon, R.A., Scolnick, E.M., Sigal, I.S.: Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U. S. A. 85, 4686–4690 (1988)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wlodawer, A., Vondrasek, J.: Inhibitors of HIV–1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284 (1998)CrossRefPubMedGoogle Scholar
  3. 3.
    Vondrasek, J., Wlodawer, A.: HIVdb: a database of the structures of human immunodeficiency virus protease. Proteins 49, 429–431 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Martin, P., Vickrey, J.F., Proteasa, G., Jimenez, Y.L., Wawrzak, Z., Winters, M.A., Merigan, T.C., Kovari, L.C.: “Wide-open” 1.3 A structure of a multidrug-resistant HIV–1 protease as a drug target. Structure 13, 1887–1895 (2005)CrossRefPubMedGoogle Scholar
  5. 5.
    Ishima, R., Freedberg, D.I., Wang, Y.X., Loui, J.M., Torchia, D.A.: Flap opening and dimer-interface flexibility in the free and inhibitor bound HIV protease and their implications for function. Structure 7, 1047–1055 (1999)CrossRefPubMedGoogle Scholar
  6. 6.
    Freedberg, D.I., Ishima, R., Jacob, J., Wang, Y.X., Kustanovich, I., Louis, J.M., Torchia, D.A.: Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11, 221–232 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Katoh, E., Louis, J.M., Yamazaki, T., Gronenborn, A.M., Torchia, D.A., Ishima, R.: A solution NMR study of the binding kinetics and the internal dynamics of an HIV–1 protease-substrate complex. Protein Sci. 12, 1376–1385 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Scott, W.R., Schiffer, C.A.: Curling of flap tips in HIV–1 protease as a mechanism for substrate entry and tolerance of drug resistance. Structure 8, 1259–1265 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Kurt, N., Scott, W.R., Schiffer, C.A., Haliloglu, T.: Cooperative fluctuations of unliganded and substrate-bound HIV–1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations. Proteins 51, 409–422 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    Perryman, A.L., Lin, J.H., McCammon, J.A.: HIV–1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci. 13, 1108–1123 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Perryman, A.L., Lin, J.H., McCammon, J.A.: Restrained molecular dynamics simulations of HIV–1 protease: the first step in validating a new target for drug design. Biopolymers 82, 272–284 (2007)CrossRefGoogle Scholar
  12. 12.
    Hornak, V., Okur, A., Rizzo, R.C., Simmerling, C.: HIV–1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. J. Am. Chem. Soc. 128, 2812–2813 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hornak, V., Okur, A., Rizzo, R.C., Simmerling, C.: HIV–1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc. Natl. Acad. Sci. U S A 103, 915–920 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wallqvist, A., Smythers, G., Covell, G.: A cooperative folding unit in HIV–1 protease. Implications for protein stability and occurrence of drug-induced mutations. Protein Eng. 11, 999–1005 (1998)CrossRefPubMedGoogle Scholar
  15. 15.
    Bhavesh, N.S., Sinha, R., Mohan, P.M., Hosur, R.V.: NMR elucidation of early folding hierarchy in HIV–1 protease. J. Biol. Chem. 278, 19980–19985 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Chatterjee, A., Hosur, R.V.: Following autolysis in proteases by NMR: insights into multiple unfolding pathways and mutational plasticities. Biophys. Chem. 123, 1–10 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    Louis, J.M., Wondrak, E.M., Kimmel, A.R., Wingfield, P.T., Nashed, N.T.: Proteolytic processing of HIV–1 protease precursor, kinetics and mechanism. J. Biol. Chem. 274, 23437–23442 (1999)CrossRefPubMedGoogle Scholar
  18. 18.
    Louis, J.M., Clore, G.M., Gronenborn, A.M.: Autoprocessing of HIV–1 protease is tightly coupled to protein folding. Nat. Struct. Biol. 6, 868–875 (1999)CrossRefPubMedGoogle Scholar
  19. 19.
    Chatterjee, A., Mridula, P., Mishra, R.K., Mittal, R., Hosur: Folding regulates autoprocessing of HIV–1 protease precursor. J. Biol. Chem. 280, 11369–11378 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Ishima, R., Ghirlando, R., Tozser, J., Gronenborn, A.M., Torchia, D.A., Louis, J.M.: Folded monomer of HIV–1 protease. J. Biol. Chem. 276, 49110–49116 (2001)CrossRefPubMedGoogle Scholar
  21. 21.
    Louis, J.M., Ishima, R., Nesheiwat, I., Pannell, L.K., Lynch, S.M., Torchia, D.A., Gronenborn, A.M.: Revisiting monomeric HIV–1 protease. Characterization and redesign for improved properties. J. Biol. Chem. 278, 6085–6092 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    Ishima, R., Torchia, D.A., Lynch, S.M., Gronenborn, A.M., Louis, J.M.: Solution structure of the mature HIV–1 protease monomer: insight into the tertiary fold and stability of a precursor. J. Biol. Chem. 278, 43311–43319 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    Ishima, R., Torchia, D.A., Louis, J.M.: Mutational and structural studies aimed at characterizing the monomer of HIV–1 protease and its precursor. J. Biol. Chem. 282, 17190–17199 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    Bannwarth, L., Reboud-Ravaux, M.: An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem. Soc. Trans. 35, 551–554 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    Broglia, R.A., Provasi, D., Vasile, F., Ottolina, G., Longhi, R., Tiana, G.: A folding inhibitor of the HIV-1 protease. Proteins 62, 928–933 (2005)CrossRefGoogle Scholar
  26. 26.
    Broglia, R.A., Tiana, G., Sutto, L., Provasi, D., Simona, F.: Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers. Protein Sci. 14, 2668–2681 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bonomi, M.F., Gervasio, L., Tiana, G., Provasi, D., Broglia, R.A., Parrinello, M.: Insight into the folding inhibition of the HIV-1 protease by a small peptide. Biophys. J. 93, 2813–2821 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Verkhivker, G., Tiana, G., Camilloni, C., Provasi, D., Broglia, R.A.: Atomistic simulations of the HIV-1 protease folding inhibition. Biophys. J. 95, 550–562 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids R. 28, 235–242 (2000)CrossRefGoogle Scholar
  30. 30.
    Christen, M., Hunenberger, P.H., Bakowies, D., Baron, R., Burgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., van Gunsteren, W.F.: The GROMOS software for biomolecular simulation: GROMOS 2005. J. Comput. Chem. 26, 1719–1751 (2005)CrossRefPubMedGoogle Scholar
  31. 31.
    Verkhivker, G.M.: Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Proteins 66, 912–929 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    Verkhivker, G.M.: In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Biopolymers 85, 333–348 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    Cornell, W.D., Cieplak, P., Bayly, C.L., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for simulation of proteins, nucleic acids, and organic molecules. J. Amer. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  34. 34.
    Stouten, P.F.W., Frömmel, C., Nakamura, H., Sander, C.: An effective solvation term based on atomic occupancies for use in protein simulations. Mol. Simul. 10, 97–120 (1993)CrossRefGoogle Scholar
  35. 35.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRefGoogle Scholar
  36. 36.
    Shoemaker, B.A., Portman, J.J., Wolynes, P.G.: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. U S A 97, 8868–8873 (2000)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gennady M. Verkhivker
    • 1
    • 2
  1. 1.Department of Pharmaceutical Chemistry, School of Pharmacy and Center for BioinformaticsThe University of KansasLawrenceUSA
  2. 2.Department of PharmacologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations