Skip to main content

Detection of Arterial Calcification in Mammograms by Random Walks

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

A fully automatic algorithm is developed for breast arterial calcification extraction in mammograms. This algorithm is implemented in two major steps: a random-walk based tracking step and a compiling and linking step. With given seeds from detected calcification points, the tracking algorithm traverses the vesselness map by exploring the uncertainties of three tracking factors, i.e., traversing direction, jumping distance, and vesselness value, to generate all possible sampling paths. The compiling and linking algorithm further organizes and groups all sampling paths into calcified vessel tracts. The experimental results show that the performance of the proposed automatic calcification extraction algorithm is statistically close to that obtained by manual delineations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kemmeren, J.M., et al.: Breast Arterial Calcifications: Associations with Diabetes Mellitus and Cardiovascular Mortality. Radiology 201, 75–78 (1996)

    Article  Google Scholar 

  2. Reddy, J., Bilezikian, J.P., Smith, S.J., Mosca, L.: Reduced Bone Mineral Density Is Associated with Breast Arterial Calcification. J. Clin. Endocrinol. Metab. 93, 208–211 (2008)

    Article  Google Scholar 

  3. Rotter, M.A., et al.: Breast Arterial Calcifications (BACs) Found on Screening Mammography and Their Association with Cardiovascular Disease. Menopause 15, 276–281 (2008)

    Article  Google Scholar 

  4. Dale, P., Mascarhenas, C., Richards, M., Mackie, G.: Mammography as a Screening Tool for Coronary Artery Disease. Journal of Surgical Research 148, 1–6 (2008)

    Article  Google Scholar 

  5. Ge, J., et al.: Automated Detection of Breast Vascular Calcification on Full-Field Digital Mammograms. In: Proc. SPIE Med. Img. 2008, 691517, pp. 1–7 (2008)

    Google Scholar 

  6. Ge, J., et al.: Computer Aided Detection of Clusters of Microcalcifications on Full Field Digital Mammograms. Medical Physics 33, 2975–2988 (2006)

    Article  Google Scholar 

  7. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Aylward, S.R., Bullitt, E.: Initialization, Noise, Singularities, and Scale in Height Ridge Traversal for Tubular Object Centerline Extraction. IEEE TMI 21, 61–75 (2002)

    Google Scholar 

  9. Wong, W.C.K., Chung, A.C.S.: Probabilistic Vessel Axis Tracing and Its Applications to Vessel Segmentation with Stream Surfaces and Minimum Cost Paths. MedIA 11, 567–587 (2007)

    Google Scholar 

  10. Schaap, M., et al.: Bayesian Tracking of Elongated Structures in 3D Images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 74–85. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Lazar, M., Alexander, A.L.: Bootstrap White Matter Tractography (BOOT-TRAC). NeuroImage 24, 524–532 (2005)

    Article  Google Scholar 

  12. Jones, D.K.: Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap with Diffusion Tensor MRI. IEEE TMI 27, 1268–1274 (2008)

    Google Scholar 

  13. Shi, Y., et al.: Joint Sulci Detection Using Graphical Models and Boosted Priors. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 98–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Doucet, A., Godsill, S., Andrieu, C.: On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing 10, 197–208 (2000)

    Article  Google Scholar 

  15. Ren, X., Fowlkes, C.C., Malik, J.: Learning Probabilistic Models for Contour Completion in Natural Images. Int. J. Comput. Vis. 77, 47–63 (2008)

    Article  Google Scholar 

  16. Daniel, W.W.: Applied Nonparametric Statistics. Houghton Mifflin, Boston (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, JZ., Cole, E.B., Pisano, E.D., Shen, D. (2009). Detection of Arterial Calcification in Mammograms by Random Walks. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics