Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

Abstract

Integration of different kinds of biological processes is an ultimate goal for whole-cell modelling. We briefly review modelling formalisms that have been used in Systems Biology and identify the criteria that must be addressed by an integrating framework capable of modelling, analysing and simulating different biological networks. Aware that no formalism can fit all purposes we realize Petri nets as a suitable model for Metabolic Engineering and take a deeper perspective on the role of this formalism as an integrating framework for regulatory and metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  Google Scholar 

  2. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Computational Methods in Systems Biology 2005, pp. 204–215 (2005)

    Google Scholar 

  3. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  Google Scholar 

  4. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210 (2007)

    Article  Google Scholar 

  5. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M.: Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering 79(1), 53–73 (2002)

    Article  Google Scholar 

  6. Chen, M.: Quantitative Petri Net Model of Gene Regulated Metabolic Networks in the Cell. Silico Biology 3(3), 347–365 (2003)

    Google Scholar 

  7. Cohen, I.R., Harel, D.: Explaining a complex living system: dynamics, multi-scaling and emergence. Journal of The Royal Society Interface 4(13), 175–182 (2007)

    Article  Google Scholar 

  8. Covert, M.W., Xiao, N., Chen, T.J., Karr, J.R.: Integrating Metabolic, Transcriptional Regulatory and Signal Transduction Models in Escherichia coli. Bioinformatics (2008)

    Google Scholar 

  9. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Finney, A., Hucka, M.: Systems biology markup language: Level 2 and beyond. Biochem. Soc. Trans. 31(Pt 6), 1472–1473 (2003)

    Article  Google Scholar 

  11. Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239 (2007)

    Article  Google Scholar 

  12. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-notch protein signalling. IEE Systems Biology 1(1), 170–183 (2004)

    Article  Google Scholar 

  13. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Formal Methods for Computational Systems Biology: 8th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, Sfm 2008 Bertinoro, Italy, June 2-7 (2008)

    Google Scholar 

  14. Ideker, T., Lauffenburger, D.: Building with a scaffold: emerging strategies for high-to low-level cellular modeling. Trends in Biotechnology 21(6), 255–262 (2003)

    Article  Google Scholar 

  15. John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the π Calculus. Electronic Notes in Theoretical Computer Science 194(3), 133–148 (2008)

    Article  MATH  Google Scholar 

  16. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  17. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Article  Google Scholar 

  18. Materi, W., Wishart, D.S.: Computational systems biology in drug discovery and development: methods and applications. Drug Discovery Today 12(7-8), 295–303 (2007)

    Article  Google Scholar 

  19. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways Representation and Simulation on Hybrid Functional Petri Net. Silico Biology 3(3), 389–404 (2003)

    Google Scholar 

  20. Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: I. A platform for modelling and simulating biopathways. Applied Bioinformatics 2(3), 181–184 (2003)

    Google Scholar 

  21. Noble, D.: The rise of computational biology. Nature Reviews Molecular Cell Biology 3(6), 459–463 (2002)

    Article  Google Scholar 

  22. Pinney, J.W., Westhead, D.R., McConkey, G.A.: Petri Net representations in systems biology. Biochem. Soc. Trans. 31, 1513–1515 (2003)

    Article  Google Scholar 

  23. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S., Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri Net Representations in Metabolic Pathways. In: Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, pp. 328–336. AAAI Press, Menlo Park (1993)

    Google Scholar 

  25. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pac. Symp. Biocomput., vol. 459, p. 70 (2001)

    Google Scholar 

  27. Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences 87(1), 83–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shaw, O., Koelmans, A., Steggles, J., Wipat, A.: Applying Petri Nets to Systems Biology using XML Technologies. In: ATPN 2004 (2004)

    Google Scholar 

  29. Simao, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli. Bioinformatics 21(90002) (2005)

    Google Scholar 

  30. Starke, P.H.: INA: Integrated Net Analyzer. Reference Manual (1992)

    Google Scholar 

  31. Steggles, L.J., Banks, R., Wipat, A.: Modelling and Analysing Genetic Networks: From Boolean Networks to Petri Nets. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 127–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Stephanopoulos, G.: Metabolic engineering. Biotechnology and Bioengineering 58 (1998)

    Google Scholar 

  33. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., et al.: E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1), 72–84 (1999)

    Article  Google Scholar 

  34. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3, 29 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, D., Costa, R.S., Rocha, M., Rocha, I., Tidor, B., Ferreira, E.C. (2009). A Critical Review on Modelling Formalisms and Simulation Tools in Computational Biosystems. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics