Skip to main content

A t-Norm Based Approach to Edge Detection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Abstract

In this paper we study a modification of the original method by Genyun Sun et al. [1] for egde detection based on the Law of Universal Gravitation. We analyze the effect of the substitution of the product by other t-norms in the calculation of the gravitatory forces. We construct a fuzzy set where memberships to the edges are extracted from the magnitude of the resulting force on each pixel. To finish, we experimentally proof that the features of each t-norm determine the kind of edges to be detected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sun, G., Liu, Q., Ji, C., Li, X.: A novel approach for edge detection based on the theory of universal gravity. Pattern Recognition 40(10), 2766–2775 (2007)

    Article  MATH  Google Scholar 

  2. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project

    Google Scholar 

  3. Prewitt, J.: Object enhancement and extraction. Picture processing and Psychopictorics, 75–149 (1970)

    Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  5. Ducottet, C., Fournel, T., Barat, C.: Scale-adaptive detection and local characterization of edges based on wavelet transform. Signal Processing 84(11), 2115–2137 (2004); Special Section Signal Processing in Communications

    Article  MATH  Google Scholar 

  6. Zhang, L., Bao, P.: Edge detection by scale multiplication in wavelet domain. Pattern Recognition Letters 23(14), 1771–1784 (2002)

    Article  MATH  Google Scholar 

  7. Lu, S., Wang, Z., Shen, J.: Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement. Pattern Recognition 36(10), 2395–2409 (2003)

    Article  MATH  Google Scholar 

  8. Toivanen, P.J., Ansamäki, J., Parkkinen, J.P.S., Mielikäinen, J.: Edge detection in multispectral images using the self-organizing map. Pattern Recognition Letters 24(16), 2987–2994 (2003)

    Article  Google Scholar 

  9. Konishi, S., Yuille, A., Coughlan, J.: A statistical approach to multi-scale edge detection. Image and Vision Computing 21(1), 37–48 (2003)

    Article  Google Scholar 

  10. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems (2008), doi:10.1016/j.fss.2008.08.005

    Google Scholar 

  11. Kim, D.S., Lee, W.H., Kweon, I.S.: Automatic edge detection using 3 x 3 ideal binary pixel patterns and fuzzy-based edge thresholding. Pattern Recognition Letters 25(1), 101–106 (2004)

    Article  Google Scholar 

  12. Liang, L.R., Looney, C.G.: Competitive fuzzy edge detection. Applied Soft Computing 3(2), 123–137 (2003)

    Article  Google Scholar 

  13. Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Transactions on Fuzzy Systems 6(1), 52–75 (1998)

    Article  Google Scholar 

  14. Kang, C.C., Wang, W.J.: A novel edge detection method based on the maximizing objective function. Pattern Recognition 40(2), 609–618 (2007)

    Article  MATH  Google Scholar 

  15. Tang, H., Wu, E.X., Ma, Q.Y., Gallagher, D., Perera, G.M., Zhuang, T.: MRI brain image segmentation by multi-resolution edge detection and region selection. Computerized Medical Imaging and Graphics 24(6), 349–357 (2000)

    Article  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  17. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  18. Alsina, C., Frank, M.J., Schweizer, B.: Associative functions: Triangular Norms and Copulas. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  19. Newton, I.: Philosophiae Naturalis Principia Mathematica. University of California (1999); original 1687, translation guided by I. Bernard Cohen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Molina, C., Bustince, H., Fernández, J., Barrenechea, E., Couto, P., De Baets, B. (2009). A t-Norm Based Approach to Edge Detection. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics