Skip to main content

Artificial Neural Network Based Algorithm for Biomolecular Interactions Modeling

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5517)

Abstract

With the advent of new genomic platforms there is the potential for data mining of genomic profiles associated with specific subclasses of disease. Many groups have focused on the identification of genes associated with these subclasses. Fewer groups have taken this analysis a stage further to identify potential associations between biomolecules to determine hypothetical inferred biological interaction networks (e.g. gene regulatory networks) associated with a given condition (termed the interactome). Here we present an artificial neural network based approach using the back propagation algorithm to explore associations between genes in hypothetical inferred pathways, by iteratively predicting the level of expression of each gene with the others, with respect to the genes associated with metastatic risk in breast cancer based on the publicly available van’t Veer data set [1]. We demonstrate that we can identify a subset of genes that is strongly associated with others within the metastatic system. Many of these interactions are strongly representative of likely biological interactions and the interacting genes are known to be associated with metastatic disease.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    CrossRef  Google Scholar 

  2. West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Olson Jr., J.A., Marks, J.R., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. PNAS 98(20), 11462–11467 (2001)

    CrossRef  Google Scholar 

  3. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s; functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    CrossRef  Google Scholar 

  4. Liu, Y., Liu, N., Zhao, H.: Inferring protein–protein interactions through high-throughput interaction data from diverse organisms. Bioinformatics 21(15), 3279–3285 (2005)

    CrossRef  Google Scholar 

  5. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Bayesian Methods for Elucidating Genetic Regulatory Networks. IEEE Intelligent Systems 17(2), 37–43 (2002)

    Google Scholar 

  6. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21), 12123–12128 (2003)

    CrossRef  Google Scholar 

  7. Shoemaker, B.A., Panchenko, A.R.: Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners. PLoS Comput. Biol. 3(4), e43 (2007)

    CrossRef  Google Scholar 

  8. Schwikowski, B., Uetz, P., Fields, S.: A network of protein–protein interactions in yeast. Nat. Biotechnol. 18(12), 1257–1261 (2000)

    CrossRef  Google Scholar 

  9. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modeling. BMC Bioinformatics 8, S9 (2007)

    CrossRef  Google Scholar 

  10. Hart, C.E., Mjolsness, E., Wold, B.J.: Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks. PLoS Comput Biol 2(12), 1592–1607 (2006)

    CrossRef  Google Scholar 

  11. Xu, R., Wunsch, D.C., Frank, R.L.: Inference of Genetic Regulatory Networks with Recurrent Neural Network Models Using Particle Swarm Optimization. Computational Biology and Bioinformatics 4(4), 681–692 (2007)

    Google Scholar 

  12. Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    CrossRef  Google Scholar 

  13. Lancashire, L., Schmid, O., Shah, H., Ball, G.: Classification of bacterial species from proteomic data using combinatorial approaches incorporating artificial neural networks, cluster analysis and principal components analysis. Bioinformatics 21(10), 2191–2199 (2005)

    CrossRef  Google Scholar 

  14. Lisboa, P.J., Taktak, A.F.: The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks 19(4), 408–415 (2006)

    CrossRef  MATH  Google Scholar 

  15. Lancashire, L., Rees, R.C., Ball, G.R.: Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach. Artif. Intell. Med. 43(2), 99–111 (2008)

    CrossRef  Google Scholar 

  16. Rumelhart, D.E., McClelland, J.L.: Parallel Distribution Processing: Explorations in the Microstructure of Cognition, Foundations, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    CrossRef  Google Scholar 

  18. Span, P.N., Bussink, J., Manders, P., Beex, L.V., Sweep, C.G.: Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome. British Journal of Cancer 89(2), 271–276 (2003)

    CrossRef  Google Scholar 

  19. Crowe, D.L., Kim, R., Chandraratna, R.A.S.: Retinoic Acid Differentially Regulates Cancer Cell Proliferation via Dose-Dependent Modulation of the Mitogen-Activated Protein Kinase Pathway. Molecular Cancer Research 1, 532–540 (2003)

    Google Scholar 

  20. Takahashi, H., Masuda, K., Ando, T., Kobayashi, T., and Honda, H.: Prognostic Predictor with Multiple Fuzzy Neural Models Using Expression Profiles from DNA Microarray for Metastases of Breast Cancer. Journal of Bioscience and Bioengineering, 98(3), 193–199, (2004)

    Google Scholar 

  21. Osthus, R.C., Karim, B., Prescott, J.E., Smith, B.D., McDevitt, M., Huso, D.L., Dang, C.V.: The Myc Target Gene JPO1/CDCA7 Is Frequently Overexpressed in Human Tumors and Has Limited Transforming Activity In vivo. Cancer Research 65, 5620–5627 (2005)

    CrossRef  Google Scholar 

  22. Winter, S.C., Buffa, F.M., Silva, P., Miller, C., Valentine, H.R., Turley, H., Shah, K.A., Cox, G.J., Corbridge, R.J., Homer, J.J., Musgrove, B., Slevin, N., Sloan, P., Price, P., West, C.M., Harris, A.L.: Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Research 67(7), 3441–3449 (2007)

    CrossRef  Google Scholar 

  23. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data. Science 302(5644), 449–453 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemetre, C., Lancashire, L.J., Rees, R.C., Ball, G.R. (2009). Artificial Neural Network Based Algorithm for Biomolecular Interactions Modeling. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics