Skip to main content

Modeling and Dynamical Analysis of Molecular Networks

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

One of major challenges for post-genomic biology is to understand how molecules dynamically interact to form networks which facilitate sophisticated biological functions. Instead of analyzing individual molecules, systems biology is to study dynamical networks of interacting molecules which give rise to life. In recent years, many progress have been made in systematic approaches and high-throughput technologies for systematic studying complex molecular networks. Analyzing these networks provides novel insights in understanding not only complicated cellular phenomena but also the essential principles or fundamental mechanisms behind the phenomena at system level. This paper presents a brief survey on recent developments on modeling and analyzing complex molecular networks mainly from global and dynamical properties of complex molecular networks. Some recent developments and perspectives of analysis on molecular networks are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano, H.: Systems biology: toward system-level understanding of biological systems. In: Kitano, H. (ed.) Foundations of systems biology, pp. 1–36. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Yeung, M.K.S., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. 99, 6163–6168 (2002)

    Article  Google Scholar 

  3. Andrec, M., Kholodenko, B.N., Levy, R.M., Sontag, E.: Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J. Theor. Biol. 232, 427–441 (2005)

    Article  MathSciNet  Google Scholar 

  4. Wang, Y., Joshi, T., Zhang, S.-X., Xu, D., Chen, L.: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22, 2413–2420 (2006)

    Article  Google Scholar 

  5. Zhao, X.-M., Wang, Y., Chen, L., Aihara, K.: Protein domain annotation with integration of heterogeneous information sources. Proteins: Structure, Function, and Bioinformatics 72, 461–473 (2008)

    Article  Google Scholar 

  6. Tegner, J., Yeung, M.K.S., Hasty, J., Collins, J.J.: Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. 100, 5944–5949 (2003)

    Article  Google Scholar 

  7. Barabasi, A., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)

    Article  Google Scholar 

  8. Buchler, N.E., Gerland, U., Hwa, T.: Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. 102, 9559–9564 (2005)

    Article  Google Scholar 

  9. Kramer, B.P., Fussenegger, M.: Hysteresis in a synthetic mammalian gene network. Proc. Natl. Acad. Sci. 102, 9517–9522 (2005)

    Article  Google Scholar 

  10. Stelling, J., Gilles, E.D., Doyle III, F.J.: Robustness properties of circadian clock architectures. Proc. Natl. Acad. Sci. 101, 13210–13215 (2004)

    Article  Google Scholar 

  11. Wang, R., Jing, Z., Chen, L.: Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Bull. Math. Biol. 67, 339–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kobayashi, T., Chen, L., Aihara, K.: Modelling genetic switches with positive feedback loops. J. Theor. Biol. 221, 379–399 (2003)

    Article  MathSciNet  Google Scholar 

  13. Chen, L., Wang, R.: Designing gene regulatory networks with specified functions. IEEE Trans. Circuits Syst. I 53, 2444–2450 (2006)

    Article  MathSciNet  Google Scholar 

  14. Wang, R., Chen, L., Aihara, K.: Construction of genetic oscillators with interlocked feedback networks. J. Theor. Biol. 242, 454–463 (2006)

    Article  MathSciNet  Google Scholar 

  15. Wang, R., Zhou, T., Jing, Z., Chen, L.: Modelling periodic oscillation of biological systems with multiple time scale networks. Syst. Biol. 1, 71–84 (2004)

    Article  Google Scholar 

  16. Wang, R., Chen, L.: Synchronizing genetic oscillators by signaling molecules. J. Biol. Rhythms 20, 257–269 (2005)

    Article  Google Scholar 

  17. McMillen, D., Kopell, N., Hasty, J., Collins, J.J.: Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. 99, 679–684 (2002)

    Article  Google Scholar 

  18. Wang, R., Chen, L., Aihara, K.: Synchronizing a multicellular system by external input: An artificial control strategy. Bioinformatics 22, 1775–1781 (2006)

    Article  Google Scholar 

  19. Chen, L., Wang, R., Zhou, T., Aihara, K.: Noise-induced cooperative behavior in a multicell system. Bioinformatics 21, 2722–2729 (2005)

    Article  Google Scholar 

  20. Li, C., Chen, L., Aihara, K.: Stochastic synchronization of genetic oscillator networks. BMC Systems Biology 1, article no. 6 (2007), doi:10.1186/1752-0509-1-6

    Google Scholar 

  21. Garcia-Ojalvo, J., Elowitz, M., Strogatz, S.H.: Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. 101, 10955–10960 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Jong, H.: Modeling and simulation of genetic regulatory systems: A iiterature review. J. Comput. Biol. 7, 67–103 (2002)

    Article  Google Scholar 

  23. Wang, R., Li, C., Chen, L., Aihara, K.: Modeling and analyzing biological oscillations in molecular networks. Proceedings of the IEEE 96, 1361–1385 (2008)

    Article  Google Scholar 

  24. Tyson, J.J., Csikasz-Nagy, A., Novak, B.: The dynamics of cell cycle regulation. BioEssays 24, 1095–1109 (2002)

    Article  Google Scholar 

  25. Leloup, J.-C., Goldbeter, A.: Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor. Biol. 198, 445–459 (1999)

    Article  Google Scholar 

  26. Ma, L., Iglesias, P.A.: Quantifying robustness of biochemical network models. BMC Bioinformatics 3, 1–13 (2002)

    Article  Google Scholar 

  27. Li, C., Chen, L., Aihara, K.: Stability of genetic networks with SUM regulatory logic: Lur’e system and LMI approach. IEEE Trans. Circuits Syst. I 53, 2451–2458 (2006)

    Article  MathSciNet  Google Scholar 

  28. Smith, H.: Monotone Dynamical Systems 41. American Mathematical Society, Providence (1995)

    Google Scholar 

  29. Angeli, D., Sontag, E.: Monotone control systems. IEEE Trans. Auto Cont. 48, 1684–1698 (2003)

    Article  MathSciNet  Google Scholar 

  30. Angeli, D., Ferrell, J., Sontag, E.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Nat. Acad. Sci. 101, 1822–1827 (2004)

    Article  Google Scholar 

  31. Yi, T., Huang, Y., Simon, M.I., Doyle, J.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Nat. Acad. Sci. 97, 4649–4653 (2000)

    Article  Google Scholar 

  32. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003)

    Article  Google Scholar 

  33. Dunlap, J.C.: Molecular bases for circadian clocks. Cell 96, 271–290 (1999)

    Article  Google Scholar 

  34. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  35. Zhao, D., Liu, Z., Wang, J.: Dupication: a mechanism producing disassortative mixing networks in biology. Chinese Phys. Lett. 24, 2766–2768 (2007)

    Article  MathSciNet  Google Scholar 

  36. Jordan, I. K., Marin̋o-Rami̋rez L., Wolf, Y. I., and Koonin, E. V.: Conservation and co-evolution in the scale-free human gene coexpression network. Mol. Biol. Evol. 21, 2058-2070 (2004)

    Article  Google Scholar 

  37. Gonze, D., Halloy, J., Gaspard, P.: Biochemical clocks and molecular noise: Theoretical study of robustness factors. J. Chem. Phys. 116, 10997–11010 (2006)

    Article  Google Scholar 

  38. Hasty, J., Pradines, J., Dolnik, M., Collins, J.J.: Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. 97, 2075–2080 (2000)

    Article  MATH  Google Scholar 

  39. Paulsson, J., Berg, O.G., Ehrenberg, M.: Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. 97, 7148–7153 (2000)

    Article  Google Scholar 

  40. Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F.J., Doyle, J.: Robustness of cellular functions. Cell 118, 675–685 (2004)

    Article  Google Scholar 

  41. Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (1999)

    Google Scholar 

  42. Gonze, D., Halloy, J., Goldbeter, A.: Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. 99, 673–678 (2002)

    Article  Google Scholar 

  43. Wagner, A.: Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proc. Natl. Acad. Sci. 102, 11775–11780 (2005)

    Article  Google Scholar 

  44. Bagley, R.J., Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S., Stadnyk, I.M.: Modeling adaptive biological systems. BioSystems 23, 113–138 (1989)

    Article  Google Scholar 

  45. Zhao, X.-M., Wang, R., Chen, L., Aihara, K.: Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucl. Acids Res. 36, e48 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Wang, R., Zhao, XM., Liu, Z. (2009). Modeling and Dynamical Analysis of Molecular Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics