An Approach to Enhance Convergence Efficiency of Self-propelled Agent System

  • Jian-xi Gao
  • Zhuo Chen
  • Yun-ze Cai
  • Xiao-ming Xu
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)


In this paper, we investigate a weighted self-propelled particles system, wherein each agent’s direction is determined by its spatial neighbors’ directions with exponential weights concerning the neighbor numbers. In order to describe the fact that some agent with more neighbors might have much larger influence on its neighbors, we introduce a scaling exponent of the neighbor number between 0 and ∞. As the exponent increases, i.e., the effect of weight becomes stronger, the network of agents becomes much easier to achieve direction consensus in our simulation. Especially, when the exponent equals to 1, the convergence efficiency is enhanced.


dynamic network swarm topological structure convergence time degree of consensus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dagorn, L., Fréon, P.: Scaling in animal group-size distributions. Proc. Natl. Acad. Sci. USA 96(48), 4472–4477 (1999)CrossRefGoogle Scholar
  2. 2.
    Lorch, P.D., Gwynne, D.T.: Radio-telemetric evidence of migration in the gregarious but not the solitary morph of the Mormon cricket (Anabrus simplex: Orthoptera: Tettigoniidae). Naturwissenschaften 87(8), 370–372 (2000)CrossRefGoogle Scholar
  3. 3.
    Shaw, E.: The Schooling of Fishes. American Scientist 206, 128–138 (1962)CrossRefGoogle Scholar
  4. 4.
    Flierl, G., Grünbaum, D., Levins, S., Olson, D.: From Individuals to Aggregations: the Interplay between Behavior and Physics. Journal of Theoretical Biology 196(4), 387–454 (1999)CrossRefGoogle Scholar
  5. 5.
    Shaw, E.: Fish in Schools. Natural History 84, 40–46 (1975)Google Scholar
  6. 6.
    Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. Computer Graphics 21, 25–34 (1987)CrossRefGoogle Scholar
  7. 7.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters 75(6), 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless senor networks: a survey. Computer Networks 38, 293–341 (2002)CrossRefGoogle Scholar
  9. 9.
    Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized Overlapping Control of a Formation of Unmanned Aerial Vehicles. Automatica 40(8), 1285–1296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stilwell, D.J., Bishop, B.E.: Platoons of Underwater Vehicles. IEEE Control System Magazine 20(6), 45–52 (2000)CrossRefGoogle Scholar
  11. 11.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Trans. on Automatic Control 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ren, W., Beard, R.W.: Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies. IEEE Trans. on Automatic Control 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grégoire, G., Chaté, H.: Onset of Collective and Cohesive Motion. Physical Review Letters 92(2), 40–46 (2004)CrossRefGoogle Scholar
  15. 15.
    Huepe, C., Aldana, M.: Intermittency and Clustering in a System of Self-Driven Particles. Physical Review Letters 92(16), 168701–168704 (2004)CrossRefGoogle Scholar
  16. 16.
    Aldana, M., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phase Transitions in Systems of Self-Propelled Agents and Related Network Models. Physical Review Letters 98(9), 095702–168705 (2007)CrossRefGoogle Scholar
  17. 17.
    Nagy, M., Daruka, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physical A 373(9), 445–454 (2007)CrossRefGoogle Scholar
  18. 18.
    Yang, W., Cao, L., Wang, X., Li, X.: Consensus in a heterogeneous influence network. Physical Review E 74(9), 037101–037104 (2006)CrossRefGoogle Scholar
  19. 19.
    Li, W., Wang, X.: Adaptive velocity strategy for swarm aggregation. Physical Review E 75(9), 021917–021923 (2007)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Zhao, Y., Tiana, B., Penga, L., Zhang, H.-T., Wang, B.-H., Zhou, T.: Accelerating consensus of self-driven swarm via adaptive speed. arXiv:/abs/0711.3896v1 (2007)Google Scholar
  21. 21.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  22. 22.
    Albert-L szl Barab si, ka Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    András, C., Eugene, S.H., Tamás, V.: Spontaneously ordered motion of self-propelled particles. Physical A 30(9), 1375–1385 (1997)Google Scholar
  24. 24.
    Reebs, S.G.: Can a minority of informed leaders determine the foraging movements of a fish shoal? Animal Behaviour 59(2), 403–409 (2000)CrossRefGoogle Scholar
  25. 25.
    Swaney, W., Kendal, J., Capon, H., Brown, C., Laland, K.N.: Familiarity facilitates social learning of foraging behaviour in the guppy. Animal Behaviour 63(3), 591–598 (2001)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Jian-xi Gao
    • 1
  • Zhuo Chen
    • 1
  • Yun-ze Cai
    • 1
  • Xiao-ming Xu
    • 1
    • 2
    • 3
  1. 1.Shanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.University of Shanghai for Science and TechnologyShanghaiP.R. China
  3. 3.Shanghai Academy of Systems ScienceShanghaiP.R. China

Personalised recommendations