Enhancing the Scale-Free Network’s Attack Tolerance

  • Zehui Qu
  • Pu Wang
  • Zhiguang Qin
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

Despite the large size of most communication systems such as the Internet and World Wide Web (WWW), there is a relatively short path between two nodes, revealing the networks’ small world characteristic which speeds the delivery of information and data. While these networks have a surprising error tolerance, their scale-free topology makes them fragile under intentional attack, leaving us a challenge on how to improve the networks’ robustness against attack without losing their small world merit. Here we try to enhance scale-free network’s tolerance under attack by using a method based on networks’ topology re-constructing.

Keywords

Complex network scale-free network network robustness intentional attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Jeong, H., Barabsi, A.-L.: Diameter of the world wide web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  3. 3.
    Barabsi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Albert, R., Jeong, H., Barabsi, A.-L.: Error and attack tolerance of complex networks. Nature 406, 482 (2000)CrossRefGoogle Scholar
  5. 5.
    Albert, R., Barabsi, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness and Fragility Percolation on Random Graphs. Phys. Rev. Lett. 85, 5468 (2000)CrossRefGoogle Scholar
  7. 7.
    Xiao, S., Xiao, G., Cheng, T.H.: Tolerance of Intentional Attacks in Complex Communications Networks. IEEE Communications Magazine 46(1), 146–152 (2008)CrossRefGoogle Scholar
  8. 8.
    Liu, J., Xiao, G., Lu, K., Chlamtac, I.: An Evaluation of Distributed Parallel Reservations in Wavelength-Routed Networks. IEEE Journal on Selected Areas in Communications - Supplement on Optical Communications and Networking 25(9), 27–39 (2007)CrossRefGoogle Scholar
  9. 9.
    Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sampling. In: Proc. ACM STOC 2005 (Feburary 2005)Google Scholar
  10. 10.
    Valente, A.X.C.N., Sarker, A., Stone, H.A.: 2-Peak and 3-Peak optimal complex networks. Phy. Review Letter 92, 118702 (2004)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Xiao, G., Ghafouri-Shiraz, H.: On Traffic Allocations in Optical Packet Switches. IEEE Journal on Selected Areas in Communications - Supplement on Optical Communications and Networking 25(9), 108–117 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phy. Review Letter 86(16), 3682–3685 (2001)CrossRefGoogle Scholar
  13. 13.
    Alderson, D., Wilinger, W.: A contrasting look at self-organization in the Internet and next-generation communication networks. IEEE Commu. Mag. 43(7), 94–100 (2005); Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles approach to understanding the Internet’s router-level topology. In: Proc. ACM SIGCOMM 2004, pp. 3–14 (2004)Google Scholar
  14. 14.
    May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: Composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Zehui Qu
    • 1
    • 2
  • Pu Wang
    • 2
    • 3
  • Zhiguang Qin
    • 1
  1. 1.University Electronic Science and Technology of China (UESTC)ChengduChina
  2. 2.Center for Complex Network Research, Department of Physics, Biology and Computer ScienceNortheastern UniversityBostonUSA
  3. 3.Center for Complex Network Research and Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations