Advertisement

Evolutionary Game in a Single Hub Structure

  • Xiaolan Qian
  • Junzhong Yang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

In this paper, we investigate the evolutionary game theory on a simplest heterogeneous network-a single hub structure. In order to describe the dynamics on structured populations, we firstly give a general form of a spatial replicator equation. Then according to it, the evolutionary equations describing the evolution of two strategies (cooperation and defection) are derived explicitly and the dynamics of the system is discussed theoretically and numerically. We found if judging the strategy according to its ability to resist the invasion of another, the cooperation does better than the defection. In some parameters when the population N is small, an initial D-hub system may evolve to an all-cooperator (AllC) state. All of these phenomena can be well explained by corresponding replicator equation.

Keywords

evolutionary game theory structured population single-hub structure spatial replicator equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Darwin: the Origin of Specis: a Variorum Text. University of Pennsylvania Press, Pennsylvania (2006)Google Scholar
  2. 2.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Nowak, M.A., May, R.M.: Evolutionary Games and Spatial Chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  4. 4.
    Albert, R., Barabasi, A.L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–96 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Strogatz, S.H.: Exploring Complex Networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  6. 6.
    Abramson, G., Kuperman, M.: Social Games in a Social Network. Phys. Rev. E 63, 030901–030904 (2001)CrossRefGoogle Scholar
  7. 7.
    Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A Simple Rule for the Evolution of Cooperation on Graphs and Social Networks. Nature 441, 502–505 (2006)CrossRefGoogle Scholar
  8. 8.
    Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical Organization of Cooperation in Complex Topologies. Phys. Rev. Lett. 98, 108103–108106 (1996)CrossRefGoogle Scholar
  9. 9.
    Santos, F.C., Pacheco, J.M.: Scale-Free Networks Provide a Unifying Framework for the Emergence of Cooperation. Phys. Rev. Lett. 95, 098104-1–098104-4 (2005)CrossRefGoogle Scholar
  10. 10.
    Santos, F.C., Pacheco, J.M.: A New Route to the Evolution of Cooperation. J. Evol. Biol. 19, 726–733 (2006)CrossRefGoogle Scholar
  11. 11.
    Zimmermann, M.G., Eguluz, V.M.: Cooperation, Social Networks, and the Emergence of Leadership in a Prisoner’s Dilemma with Adaptive Local Interactions. Phys. Rev. E 72, 056118–056122 (2005)CrossRefGoogle Scholar
  12. 12.
    Rong, Z., Li, X., Wang, X.F.: Roles of Mixing Patterns in Cooperation on a Scale-free Networked game. Phys. Rev. E 76, 027101–027104 (2007)CrossRefGoogle Scholar
  13. 13.
    Pusch, A., Weber, S., Porto, M.: Impact of Topology on the Dynamical Organization of Cooperation in the Prisoner’s Dilemma Game. Phys. Rev. E 77, 036120–036125 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Xiaolan Qian
    • 1
  • Junzhong Yang
    • 1
  1. 1.Beijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations